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We present here the asymptotic coordinate transformation between a coordinate system associated with null
hypersurfaces and one associated with an asymptotically shear-free (but twisting) null congruence. The general
asymptotically flat metric is expressed in this new coordinate system. Special cases of this are the algebraically special

metrics in their “natural” coordinate system.

1. INTRODUCTION

In the study of asymptotically flat solutions of the Ein-
stein (or Einstein-Maxwell) equations two types of “null
coordinate” systems have been commonly employed. The
first of these (referred to as Type I) and by far the most
frequently used is based on null hypersurfaces at infi-
nity.1~5 By now a reasonable understanding of the physi-
cal meaning (energy—momentum, angular momentum,
multipole moments, etc.) of many of the geometric quan-~
tities involved, has been acquired. The second of these
coordinate systems6é~10 (referred to as Type II) is based
on twisting, asymptotically shear-free null geodesics. It
has been most commonly associated with the class of
solutions of the Einstein equations known as the alge-
braically special, twisting metrics. The physical mean-
ing of the geometric quantities involved in these metrics
has been obscure. It is one purpose of this paper to ex-
press asymptotically these solutions in the first coordi-
nate system (and thereby clarify their meaning). This is
accomplished by solving the broader problem of deter-
mining the general coordinate (and associated tetrad)
transformation between the Type I and II systems.

Asymptotically flat spaces have been investigated from
several points of view. Most earlier investigations were
based on reasonable guesses for the behavior of the
metric tensor at spatial infinity. Major work by Bondil
and SachsZ improved the situation greatly by utilizing
characteristic surfaces and deriving from very simple
assumptions the asymptotic behavior of the metric ten-

This point of view is adopted in this work. It is assumed
that the reader is familiar with this formalism.

2. PRELIMINARIES

The coordinatization of asymptotically flat empty spaces
is most easily approached by considering future null in-
finity J* of Penrose.ll (Past null infinite J~ could just
as easily have been considered.) If for descriptive pur-
pose we consider only the conformal structure of space—
time, then J* can be treated as an ordinary three-dimen-
sional boundary to a four-dimensional region.

We coordinatize J*, which is a null surface, by first in-
troducing arbitrary, nonintersecting, spacelike cuts which
can be labeled by x0 = » = const. Since J* is $2 X R, its
generators can be labeled by the complex stereographic
coordinates of a sphere, ¢ and ¢.

There are several ways to coordinatize an interior
neighborhood of J* once we have chosen a particular
coordinate system on J*. Two types of coordinate sys-
tems are of particular interest to us. To develop a Type
I coordinate system, we choose null geodesics, with tan-
gent vector /¢, from the interior that are ovthogonal to
the © = const cuts of J* at every point on the cut. Each
of these geodesics is identified by the « and the { and {
of its intersection with J*. The affine parameter along
each geodesic serves as the radial coordinate x1 = 7,
Because of the hypersurface orthogonal character of the
geodesics we can choose [, =u , = 89 and I* = &4 . The
freedom in the choice of the affine parameter permits us

sor and the Riemann tensor. In the spin coefficient for- to choose the expansion (p = — 311 ) of the congruence

malism developed and applied to asymptotically flat to be of the form i

space in NP4 and NUS the emphasis is shifted from the

metric tensor to the empty space Riemann (Weyl) tensor. p=—r1+0(@3). 2.1)
1847

Copyright © 1972 by the American Institute of Physics



1848

The complex shear o of the congruence is found to be of
the form:

0=0%"2 4+ 0(r4). (2.2)
A tetrad system of the type used in NU can be adapted to

this coordinate system. The proof of these assertions
can be found in NU.

To develop a Type II coordinate system, we choose null
geodesics, with tangent vector /#, from the interior that
are not orthogonal to the u = const cuts. As will be
shown later, we can always choose from such geodesics,
three parameter families which are asympiotically
shear free,though in general twisting. Though these
families do not generate null surfaces they still induce a
coordinate system in the neighborhood of J* in a manner
similar to the way Type I was introduced. Each geodesic
is labeled by the u, £, and ¢ of its intersection with J*,
with the affine length 7 serving as the radial coordinate,
so that = 0. The freedom in the choice of the origin
of v will enable us to choose the expansion, p to be of the
formp =— (7 +i2) 1 + O(r3) or

p=—71+iZ72+0(r3), (2.3)
where 7, the asymptotic twist, is real. The shear vani-
shes asymptotically so that

o =0(r3). (2. 4)
A tetrad system of the type used by Talbot® can be adap-
ted to this coordinate system.

In each of the above cases (i.e., TypesIandII) the tangent
vector [# to the geodesics is chosen as the first tetrad
vector. The remaining three tetrad vectors are restrict-
ted by the condition that they be parallel propagated
along each of the geodesics;i.e., the spin coefficients

k, €,and 7 must vanish. The tetrad vectors are expres-
sed in the form

b = fH

1, mE =UbH4 + X251,

mb = wbk + £eby, (2.5)
where the index assumes the values 0, 2, 3. In a Type I

system X0 =1 and £0 = 0.

In order to find the coordinate transformation from a
Type I to II system, it is most convenient to first find the
associated tetrad transformation where all the vectors
are described in the I coordinate system.

The tetrad transformations used are the three two-para-
meter tetrad transformations!2 which are equivalent to
the six~parameter restricted Lorentz group. Though the
notation does not show it, these transformations are to
be performed consecutively. We first consider the null
rotation about ##, with complex parameter b, given by

I = In + bk + Dmi + bDE, TA =nt

mi = mk + buk, (2.6)

This will be followed by the null rotation about /* with

complex parameter a, given by
It =1, 7Ar=nk+amht +amt + aals,
mi = mh + ale, 2.7

Finally the Lorentz transformation in the I¥, n# plane
coupled with the spatial rotation in the m, m# plane with
real parameters G and H is given by
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" =Gl*, #*=c¢"", w*=e"m" (2.8)

3. THE TRANSFORMATIONS

In NU the NP equations were solved asymptotically in a
Type I coordinate system with its associated tetrad,
under the assumption that ¥, = ¢§r 5 + O(»6). (This
is probably the most general asymptotically flat solu-
tion.) The entire solution in the form used here is pre-
sented elsewhere,13

Starting with this solution (in Type I coordinates) we will
utilize asymptotically vanishing tetrad transformations
to obtain a tetrad associated with a Type II system;i.e.,
one withk =7 =€ =0 and asympltotically vanishing
shear. We first use Eqgs. (2. 6), the null rotation about n#,
to introduce an 7* with twist,i.e., cause the new p = p.
The complex parameter b of the transformatlon is as-
sumed to be of the form

b=—L(,8,8)r™ + Mu,§,T)7"2 + 0(r~3). (3.1)
The new shear ¢ then takes the form (Appendix ):
0 =(00—LL —BL)»~2 + (M + LM + LM

— L38P/P — 2L25% InP + LBa0 + 008L

— LMP/P)r~3 +0(r4), 3.2)

where the dot denotes 3/9u. For a Type II system the
leading term of ¢ must vanish by definition; therefore, L
is given by a solution of the differential equatlon

00 =L + LL. (3.3)

The arbitrariness in the solution corresponds to the

freedom in the choice of the Type I coordinates.

The spin coefficient « is given by

Zo0 + LSL + LBL + LLL)» ™3 + O(r~4).
(3.4)

With Eq. (3. 3) we see that the leading term of K can be
made to vanish by choosing

I?:(M——

=—L3L. (3.5)
(This ch01ce of M causes in addition the coefficient of
772 in ¢ to vanish.) The vanishing of K is even stronger
than we have indicated; we can make k vanish to any
order of » 1 by specifying b to further orders. This

“vanishing” of k¥ is not changed by the remaining tetrad
transformations (see Appendix), and so we can consider
K to actually vanish and I# to actually be tangent to a
geodesic congruence, also a necessary condition for a
Type II system.

We now have a tetrad system for asymptotically flat
space whose /¢ field is tangent to a geodesic and which is
asymptotically shear free but twisting. To introduce a
Type II coordinate system, we wish to have further a
tetrad for which 7 and € vanish as well. We saw that
for k to vanish we had to, in principle, specify that the
higher order terms of b cancel the higher order terms
of K. In order to have 7 and € vanish we will have to
make similar conditions on the other transformation
parameters a,G,and H of (2. 7) and (2. 8). After a rather
tedious calculation one finds

a=L+ (L3L —L2T + L33 mP)r 1 +0(r2), (3.6)
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G =1— LL(P/P)r1 + 0(r2), (3.7a)

H=iI3 ImP—~L3 InP)r1+0(r2). (3.Tb)
The transformations (2. 6), (2. 7), and (2. 8), with (3. 1),

(3. 3), (3.5), (3. 6),and (3. 7), applied consecutively to a
Type I tetrad yield the Type II tetrad.

In order to obtain the Type I to Il coordinate transforma-
tion, we assume that the coordinates of J* are the same
in the two systems, i.e., the transformation should be
asymptotically the identity transformation and have the
form

w =u+art +ayr 2+ 0(r3), (3. 8a)
v =% —by T byrl +0(r2), (3. 8b)
g =€+ v+ cyr 2+ O(r73). (3. 8¢)

Since I* (the tangent vector to the Type I geodesics) is
known (from the tetrad transformation) but with the
components expressed in _a I coordinate system, the con-
dition (2. 5) (namely that [¥ = 6% ,in a II coordinate sys-
tem) severely restricts the transformation (3. 8). In
fact it determines all the parameters except b, yielding

a; = LL, (3.9a)
ay = 3LIZ(LL +IL — LLP/P + 25L + 28L) (3. 9b)
+ $L23L + $L23L,
by = boLL + L8by + LBb,, (8.9¢)
¢, = 2LP, (3.9d)
¢, = 2PLSL + PL25 InP. (3. 9e)

The b, is determined by (2. 3),i.e., by the condition that
the »'~2 term in p be imaginary. One thus obtains
by =—LIP/P + (8L +3L + LT +LL)  (3.10)
and .
2iz =8L —5L + LT —~TL. (3.11)
4. ASYMPTOTICALLY FLAT SPACE IN A TYPE I
COORDINATE SYSTEM

In this section we present a summary of the results of
the combined coordinate and tetrad transformation on
the NU solutions. All quantities are expressed in a Type
II coordinate and tetrad system. These results repre-
sent a solution to the general spin coefficient (NP) equa-
tions in a Type I coordinate system in asymptotically
flat space. As such they are presented independently of
the coordinate transformation, without any indication of
the transformation such as primes and tildes.

I. The tetrad vectors:

Ik = 69, (4. 1a)

ne = Ubg + X269, (4. 1b)

me = wb§ + £26%. (4. 1c)
II. The metric variables:

U = (B/P)r + U + O(r1), (4. 22)
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X0 =1+ 0(r2), (4. 2b)
X2 = X3 = O(r~3), (4. 2¢)
w=L—LB/P + 0%l + 0(r"2), (4. 2d)
£0 = — Lyl —{LT¥ 2 + O(r3), (4. 2e)
£2 = pr-1 4+ {ZPr 2 + O(r3), (4. 2f)
£3 = Pyl — ZPr 2 4+ O(r73), (4. 2g)
with
U0 = — 55 nP—L[L5P/P+LEB/P + LL
+TL — (B/P)(LT + Ii) + 5L + BL], (4. 2h)
w0 = 2, =(L — LB/P) + i(LZ + 5%), (4. 2i)
2% = 8L —8L + LL—TL. . 24)
III. The spin coefficients:
Kk=€=17=0, (4. 3a)
o =0(r4), (4. 3b)
T=X =0(r3), (4. 3c)
p=—r1+iZr2+0(r3), (4.3d)
p=— (LBP/P + 55 InP— Li}i/P + LT +5L)r-1
+0(r-2), (4. 3¢)
v =%P/P—iﬁ/p+f+ o(r-1), (4. 3f)
a=3i@TP/P - 9T — 8 mP)r-1 — Liz@p/pP
— Zi— 5 InP)r 2+ 0(r8), (4. 3g)
= L(LP/P +5 nP)r-1 + O(r-2), (4. 3h)
y =—3P/P + 0(r2). (4. 31)
IV. The tetrad components of the Weyl tensor:
Yo = ¥qr=5 + 0(r76), (4. 4a)
¥y =Yqr 4 + 0(r9), (4. 4b)
Yo =¥§r3 +0(r™4), (4. 4¢)
V3 = ¥3r 72 + 0(r73), (4. 4d)
vy =997t + 0(r2), 4. 4e)

V. With

Y8 — ¢ =— 2 Re(5W + LW + LW — 2LWP/P)
+ 4izU0, (4.5a)

¥§ =— SR — LR + 2LRP/P, (4. 5b)

Y9 =—R + 2RP/P, (4. 5¢)
with B B

W =32 + P(LzPy, (4. 5d)

R=38N+IN—INP/P +N2—2NS InP, (4 5e)
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N=L—3 InP. (4. 5f)

VI. The differential equations relating the ¥/ (these
equations are found directly from the Bianchi identities,
Egs (4.5) of NP

5Y9 = 3(P/P)YR — 49 + L9 — 3L(P/P)u9 + 4LY9,

(4. 6a)
SYQ = 3(B/P)YR — YR + Ly — 3L(P/P)¥§ + 3Ly3,

(4. 6b)
5yg = 3(P/P)y§ — ¥4 + Lyg — BL(P/P)yY + 2LYY,

(4. 6¢)
BYO = 3(B/P)YY — g + Ly — 3L(P/P)Y9 + Ly.

(4. 6d)

[Equation (4. 6d) is identically satisfied with the use of
Egs. (4. 5b) and (4. 5¢).]

The variables ¥/§,v9,¢9%, ¥4, and 9 are easily related
to their Type I counterparts (symbolized by I) by

1 1 I 1 1
Y9 =g — 4Ly + 6L2YG — 4L3YG + LAY, (4.7a)

I I I I

Y9 = 9 — 3LYG + 3L2y§ — L3y, (4.'Tb)
1 I I

V9 =v§ — 2Ly + L2y9, (4. 7¢c)
1 1

Y =y — Ly, (4.7d)
1

w% - 11/91 (4. 76)

5. DISCUSSION

A result of this study of Type I and Type II coordinate
systems in asymptotically flat space is a solution to the
general spin coefficient equations (which are equivalent
to the Einstein field equations) based on an asymptotical-
ly shear free but twisting congruence of null geodesics.
This solution is obviously equivalent to the solution one
would obtain by actually integrating the spin coefficient
equations in a Type II system in asymptotically flat
space. The condition for asymptotic flatness used by NU
for a Type I system also applies for the Type II system,;
i.e.,

Yo = ¥J7r 5 + 0(r76), (5.1)
where the order symbols do not change when differentia-
ted with respect to the nonradial coordinates.? With this
point of view the variable L is interpreted as the vari-
able of integration associated with the 7~1 part of the
metric variable £0 [Eq. (4. 2d)]. The solution is given in
terms of the basic variables L and P and the variables
v, ¢Q,and § + 9 which satisfy differential equations
(4. 6). Comparison with NU shows that L takes the place
of 00 as a basic variable. We interpret this to mean that
the information or news carried by o? in the NU solution
is carried by L for the same solution in a Type II coor-
dinate system.

We can define a subset of the asymptotically flat spaces
as being asymptotically algebraically special if there
exists a Type II system such that

W8 =9 = 0. (5.2)
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[Note that this is more than the condition that ¥§ = 0 in
(4. 7a) have a repeated root for L. L must also satisfy
(3. 3).] Algebraically special metrics when looked at
asymptotically obviously have this form (though having
this form is no guarantee of algebraic specialness) and
thus satisfy (4. 6) with (5. 2). More important, we now
have the tool for taking the geometric quantities associa-
ted with the algebraically special metrics and interpret-
ing them physically by studying them in a Type I system,
This work is now in progress.

APPENDIX

We can find the transformation law of the spin coef-
ficients by substituting the transformed tetrad, in terms
of the original, into the definition of the spin coefficient;
e.g., the transformation of o under (2. 6) is given by

mhimv

o7
(t, + bm, + bm, + bbn,). (mt + ba¥) (m? + bnv).

s

Simplifying and using the definitions of the original spin
coefficients, we obtain

oc=0+ b(T + 28) + b2(u+ 2y) + b3v — 6b — bAb.

where

p=m- o a=m L 0

. (a1)

The behavior of the spin coefficients and the i/, under
(2. 6) (the null rotation about ##) is given by

=p + 2ba + bT +2bby + b2x + b2by — db — bAD,

p
(A2a)
G=0+b(T+28)+b2(u+ 2y) + b3v— 8b — bAD, (A2b)
K =Kk+b(p+ 2)+0bo+bb(r +28)+b2(1 + 20)
+ b2b(u + 2y) + b3X + b3by — Db — bob
— bdb — bbAD, (A2¢)
T =7+ 20y + b2v — AD, (A2d)
g=u+by, (A2e)
X =X+ by, (A2f)
vV =v, (A2g)
T=mu+bu+bx +bby, (A2h)
@=a +bx + by + bby, (A2i)
B=B+0b(u+y)+ b2y, (A2j)
; =7 + bV: (A2k)
E=c+b(a+7)+DbB+bb(u+y)+b2x + b2y
(a21)
and
Yo = Yo + 4bYy + 6b2y, + 4b3yYy + by, (A3a)
Y1 =¥y + 30y, + 362y, + b3y, (A3b)
Wy = Uy + 26y + b2y, (A3c)
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Uy = Y3 + by, (A3d)
lL"} = ll/4. (A3e)

behavior of the spin coefficients and the ¥, under

(2.7) (the null rotation about I#) is given by:

Wy =Wyt dayy + 6320, + 4ady, +aty,.

1851

(Ab5e)

The behavior of the spin coefficients and the /4 under
(2. 8) (the combined Lorentz transformation in the /¥, n#
plane and spatial rotation in the m#, m# plane) is given

0 =p+ax, (Ada)
0 =0+ ak, (Adb)
K =K, (Adc)
T =71+a0 +ap + aak, (A4d)
g =pu+arm + 2af + 2aac + a2¢ + a2ax + 6a + aDa
(Ade)
X=x+a(r +2a)+ a2(p + 2€) + a3k + 5a + aDa
_ (A4f)
V=v+ax +a(u + 2y)+aal™+ 2a)
+ a2(t + 2B) + aa2(p + 2¢)
+ a30 + aa3k + Aa + ada + aba + aaDa, (Adg)
7 =7+ 2ae + a2k + Da, (A4h)
a=a+alp+e)+ ak, (A4i)
B =B +ac+ ao + aax, (A4))
y=y+aa+alf+7)+aa(p+ e€)+ a0+ aa?k,
(A4k)
E: € + ZK (A41)
and _
Yo = Yo, (A5a)
W1 =¥y +av, (A5b)
Uy =Wy + 2a¥, + a2y, (A5c)
Vs = Vg + 3ay, + 3a2¢, + a3y, (A5d)

by
o = Gp, (A6a)
0 = Ge2iHg, (A6D)
K = G2eifg, (A6c)
T = eifiT, (A6d)
p=G1lp, (Abe)
X = Gle2il), (A6f)
v = G2 iHly, (A6g)
T = e il (A6h)
a=eiflq + 2 H(GI5G + {5H), (A61)
B = eifg + LeiH(G15G + i6H), (A6j)
y = Gly + $GL(GLAG + iAH), (A6k)
€ = Ge + 3G(G1DG + iDH) (A61)

and _
Yo = G2e2ifly, (AT7a)
Yy, = Geilyy, (Ab)
Vg = ¥y, (AaTc)
Uy = Gle iy, (A7d)
Y, = G2e2illy,, (ATe)
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Characterizing the state of a relativistic particle by a pair (x ,,&,) of 4-vectors, we are led, in a natural way, to a group
3¢5 of canonical transformations which includes the Poincaré group and dilatations. The structure of the group and its
induced irreducible unitary representations are explored. It is shown that 3 has a semisimple noncompact subgroup
which permits a systematic treatment of exact and of broken dilatation symmetry. The relevance of these ideas to scale
dimension and to a new symmetry, scale conjugation, is discussed. As an application, a mass formula is derived from

broken dilatation symmetry.

1. INTRODUCTION

The role of group theory and of algebraic methods in the
description and exploitation of kinematical symmetries
has a long history, both in the nonrelativistic and in the
relativistic domain. On the other hand, it is hardly more
than a decade since the importance of dynamical sym-
metries and the usefulness of algebraic methods in this
field has been realized. The prototype and ideal of a
dynamical group is the nonrelativistic Galilei group
which, apart from accounting for the kinematical sym-
metries and the associated conservation laws, contains
a full statement of the nonrelativistic dynamical law.

There are many reasons which make it desirable to have
a relativistic analog of the Galilei group or, even more
generally, to construct a relativistic group which incor-
porates dynamical space~time symmetries. In our
opinion, the recent evidence that in the high energy re-
gion, especially in inelastic collisions which probe the
internal structure of hadrons, approximate dilatation
symmetry is found, lends added impetus to the search
for a relativistic dynamical space~time symmetry
group. Broken dilatation invariance is clearly a dynami-
cal symmetry, closely tied to space-time, yet not of a
kinematical character. The major purpose of this paper
is to show that it is possible to extend the (kinematical)
Poincaré group in 2 manner which leads to a dynamical
group that contains, in an essentially unavoidable way,
dilatations.

We first review the standard process by which one
arrives at a nonrelativistic dynamical group. In non-
relativistic physics, an “event” is labeled by the coordi-
nates q,, £ =1, 2,3, and a universal fime t. We may rep-
resent the state of a particle by g,, which then is to be
considered as a function of {. The dynamical develop-
ment of states is precisely given by specifying ¢,(t). The
kinematics is described by the Euclidean groupl SO(3) ®
TZ, acting on the g, coordinate space. In order to have a
dynamical group, we adjoin time translations (generated
by H) and the nonkinematical velocity transformations
{generated by Galilean boosts G). The latter connect

the kinematical coordinates g, and the time {. In this
manner we obtain the Galilei group

Gy = (SO(3) x Ty @ (T{x TY).

It is not difficult to adjoin further, nonkinematical trans-
formations so as to obtain a bigger dynamical group, in
fact one which contains dilatations. This group 3¢, or
rather its central extension 3,4, has interesting quantum
mechanical applications.2

The situation is very different in relativistic physics.
Here, an “event” is labeled by the world coordinates
Xy, pu=0,1,2,3, bul lheve is no velalivistic universal
lime. At first sight it therefore appears that we cannot
have a group which acts on a manifold larger than the
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geometrical Minkowski space. The corresponding group
of motions is the Poincaré group SO(3,1) ® T{, which is
a purely kinematical group.

However, closer inspection of the nonrelativistic case
suggests a way to enlarge the Poincaré group to a dyna-
mical group, without reliance on some analog of univer-
sal time. As well known, nonrelativistic dynamics may
be formulated without reference to universal time if we
adopt a “phase space” approach. In essence, this means
that we characterize the states of a (noninteracting and
nonconstrained) particle not by the values of the function
q,(t), but rather, we define

dq
Xp = qk(O), £, = <d_tk> o

and label every possible state by the pair (x,, £,). Thus,
a state corresponds to a point of the six-dimensional
phase space. We than define for any pair A(x, §) and
B(x, &) of dynamical observables of Poisson bracket,
setting

0A OB 0A dB . ,
[4,B]p == 75 — z5 =— (summation over j).
TP a8 9g oy (1.1)
In particular, we have
fpx)p=0, [§w&lp=0, [Xp&lp=106,. (1.2)

The search for a dynamical group can now be formulated
in the following fashion: We look for a (linear inhomo-
geneous) group of canonical transformations

£, Eix, £),

which leaves (1. 2) invariant and which contains the kine-
matical transformations x, - x; = Ry;x; and x, = x; =

X, t a,. In Appendix A we show that the smallest dyna-
mical group so defined is precisely the standard Galilei
group which, when realized on the phase space manifold
(x, &), assumes the form

x, 2 xj(x, §),

-
Xy, —Rijj,

: (1.3a)
p =5 (1.3b)
(5,; = gk’
:;xk L (1.3¢)
E,=8 v,
Axp =2, —TEy, (1.3d)
é); = gk’

where R,;, a,,v,,7 are the usual parameters of the res-
pective subgroups of G ,.
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These observations suggest an attempt for the formu-
lation of a relativistic dynamical group.

We base our future work on the following:

Postulale: The state of relativistic particle is charac-
terized by a pair (x“ , ‘Eu) of independent 4-vectors.

This means that the state of a particle is represented by
a point in an eight-dimensional “phase space.” Corres-
pondingly, the dynamical development is represented by
a curve in the (x, ) space.

We may paraphrase this postulate by saying that /he full
desc1 iplion of a stale rvequives two Minkowski frames,

E, (x)and E5 1(§). For brevity, we may refer to the
first as the “external frame” and to the second as the
“internal frame.” In this language, then,x summarizes
the data of the external state and { subsumes the infor-
mation on the internal state. In a sense, we have a ver-
sion of a bilocal theory, inasmuch as when we wish to
formulate field theory in our E31(x) X E3 1(é) back-
ground, the field functions Y (x, £) will have to depend on
both sets of coordinates.

An alternative and equivalent viewpoint is to say that we
look upon a particle as a vector field over a Minkowski
space. That is, a particle is characterized by a world
point x and an aflached vector §,. In a sense, this
characterization of a particle is not much more outland-
ish than the accustomed picture of visualizing a particle
by a point in ordinary space to which a “spin vector” is
attached. Accordingly, it may be permitted to think of

£“ an an “internal state variable.”

We are now prepared to construct a dynamical group,
following the nonrelativistic analogy. We define, for a

pair A(x, £) and B(x, £{) of dynamical observables, the
relativislic Poisson brackels
0A 0B 0A 0B
A _— - 1.4
[4,B]p = 3xP 3EP  3&P axP (1.4)
and obtain3 for x and &,
[x“)x] =0, [gu"gu]P— [xplgu]P:guy'(1.5)

The dynamical group will consist of cevtain canonical
transformations

x, = x,x, £),

£, &, £),
which leave (1.5) unchanged.

2. THE DYNAMICAL GROUP 3C;

A. Construction of the group

To start with, we wish to include Lorentz transforma-
tions x, = x|, = A, xf. But these leave (1.5) invariant if
and only if they are accompanied by a Lorentz transfor-
mation §, — & = Ay, £¢ with the same set of parameters.
The necessity of this pair of equal Lorentz transforma-
tions is also evident from the fact that, because of our
basic postulate, {, is a vector field over the Minkowski
space.? We denote the generators of this Lorentz sub-
group by J

Next, we consider translations x, - x| = x, + a,. To-
gether with &, — 5’ = & these form canonical trans-
formations. The correspondmg generators will be de-

noted by P,
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At this point, we have nothing more than the Poincaré
group SO(3,1) ® Tf. We are perfectly free to adjoin
independent translations for the internal reference
frame: the set x, —»x/ = =%, £ ‘g’"l = £u + b# of trans-
formations leaves (1.5) invariant. If we denote the gene-
rators of these new transformations by H“ the structure
of our group is SO(3,1) ® (T) x T}). This group is
purely kinematical because the eff ect of both Pp and H

is to merely shift the curve of dynamical development m
the (x, £) space parallel to itself [see Figs.1a and 1b].
Another way to express this is to note that the Casimir
invariants of this group are

@, = P P,
Cy= W, WH,

e, =M,0*, €,=P,IH,
Cy=V,VE, Q=W Ve,

where W“ is the usual Pauli~Lubanski vector

W” = ée‘wpoJ"PPc
and Vp is its analog with P replaced by I, i.e.,
v, =3e€ €uppod PPIIC.

It then follows that the state functions (or, in a field
theory, the field functions) are separable products, ¥ =
V1 (pW,(7), so that the system is essentially trivial: the
internal and external state variables are unrelated.

Thus, we now look for dynamical canonical transforma-
tions which will have to mix the x and £ variables, so as
to give an intrinsic change in the dynamical development
curve in the (x, &) space. The simplest such one-para-
meter transformation is given by X, 2 x =x o&
which, together with 5# - £ = ép, 1s mdeed canomcal
By denoting the correspondmg generator by S, the group
structure becomes

G5 =1(50(3,1) x T)® (T£x TY).

This, the smallest relativistic dynamical group, is a com-
plete analog of the nonrelativistic Galilei group. It has
been introduced by us earlier,5~8 based on a different

FIG.1. The action of transformations in the (x, £) space.
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line of argument and it was realized on a different car-
rier space.? We showed? that, remarkably enough, the
Casimir invariants of G4 are

e, =PPr, C,=W,Wk,

i.e., precisely those of the Poincaré group.

At this point we observe that there is no reason to
single out x over £, so that we are naturally led to con-
sider the analogous transformations x, —» x, = x,,

gp - 5,3 = g# + ax, . This one-parameter group (whose
generator we denote by C) is indeed a canonical trans-
formation. The effect of the S and C transformations on
the dynamical state development curve is illustrated in
Figs.1c and 1d. However, the sel of canonical tvansfor-
malions genevaled by JuP’Pu , H#, S,and C does nol show
closure: We do not have a group. It is not difficult to
prove that, in order to complete the group structure, we
must add yet another one-parameter set of canonical
transformations which is given by x, - x, = erx,  and
£, > &, =e*§,. We realize that these transformations
{whose generator will be denoted by D) are precisely
dilatations on the external variable x, accompanied by
corresponding “contractions” on the internal variable &.
It is striking how the demand of having a closed group
of canonical transformations leads, in a natural and un-
avoidable mannevr, 1o the inclusion of dilatations. The
effect of D in the (x, ) space is illustrated in Fig.le.

B. Structure and basic properties of JC;

We now summarize the features of the group of canoni-
cal transformations which we arrived at in the above
manner.

The carrier spacel® is E;(x) X E;;(£) and the defining
transformations are

! = p
X Appx s

:)H (2.1a)
TR = At
x =x, +a,,
p: bt F (2.1b)
EL :gps
x| =
m: " Fur (2.1¢)
'EL :‘é“ +b“)
x! =x, —oé
S: 1,‘ K B2 (2.14)
i :guy
C: x‘,‘ = (2.1e)
" :g# +axp,
[ }\x
p: T (2. 1)
5;’1 :e'xt‘j#.

Performing the transformations in the order J,I1, P, S,
C, D, these formulas yield, in a condensed form,

x' = e A —ot) +a—ob}, (2.2a)
£ = eMA[(1 — o)t +ax] + (1 —ao)b +aa}.  (2.2D)

Denoting such an arbitrary transformation by the sym-
bolll

g=®,0,0,a,b, A),
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we easily find the composition law
g'g=W,a"0,ab",A){,0,0,a,b,A)
= <A' +a +log{l — e2rao’),

(1 —e2rac’) (a + e2ra’ —aa’s’),
(o0 + e2*2¢’ — e 2*q00’)/(1 — e 2 aa’),

Aa + eM’'o + era’ — e raoa’,

A'b + erb’ —=e‘>\aa’,A'A>. (2.3)
The inverse element of g is then
gl =(-xa+1log{l —ao),—e2ra(l —ao),

—e2xg(l —ao)l,— e 1g + ergA™1b,

— e M1l — a0)A1b — e raA~1q, A1), (2.4)

Thus, the transformations indeed close to form a group
which we shall denote by 3. It is interesting to note
(see Appendix B) that this group is the natural relativis-
tic generalization of Hagen's group ¥, whose central
extension 3, he called the “conformal Galilei group”
(cf. Ref, 2),

From the composition law (2. 3) we obtain, by standard
methods, the following Lie algebra:

[Juv’Jpo] = i(gVPJuo_ 8o vo —8uod T 8u0d ), (2.5a)
[Joos Pul = 18 Py — 8P o)y (2. 5b)
[Toor T, ] = 18T, — g1 ,), (2.5¢)
[P,,11,]=0, (2. 5d)
(P, P,]=[0,,I,]=0, (2. 5€)
[S,P,]=0, [S1,]=iP, (2. 5f)
[C,P,]=—dl, [CI,]=0, (2. 5¢)
[D,P,]=—iP,, [D,I,]=iI, (2.5h)
[S,C]=iD, [S,D]=2iS, [D,C]=2C, (2.5i)
[yur S} = [dys C] = [J,,, D] = 0. (2.5§)

At this point we observe that if we introduce the linear
combinations

I,=3D, I,=3(C+8), I;=3(C-95), (2.6)

then (2.5i) can be rewritten as

[1,1,] =iy, [Ig,I3)=ily, [l 1] =—1i,.(2.7)
Thus, the dynamical canonical transformations gene-
rated by S, C, D form a noncompact SO(2, 1) [or, equiva-

lently, SU(1, 1)] subalgebra.l12
We can now exhibit the structure of the (covering of) the
dynamical group ¥ as

3, = (SL(2,C), x SU(1,1),)® (TL % TY). (2.8)

Thus, the maximal Abelian subgroup (radical) is the
direct product of the “external” and “internal” transla-
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tion group, and the other factor in the semidirect product
decomposition is the direct product of a standard kine~-
matical Lorentz and a purely dynamical SU(1, 1) group.
The latter containg the dilatations. The aesthetic aspects
of this structure are indeed pleasing.13

In order to write down the Casimiyr invariants of s, it
is useful to introduce the antisymmetric Lorentz tensor
R, defined as

R, =P“IIU -Pyl'lu. (2. 9)
It is then found that there are two Casimir invariants
which can be written in the form

Cy =— %RWRW, (2.10a)

C, = éJwRPU + S N# + CP, Pt —DP TIF, (2.10b)
We may say that (2.10a) gives the equation of the orbits
{see next subsection) in the carrier space of the radical.
Explicitly, we have

€, = (P,II¥)2 — (P, PH) (I, IP). (2.11)

C. Representations of 3C;

In order to classify the irreducible unitary representa-
tions of our group, we use the method of induced repre-
sentations,14

The semidirect product structure (2. 8) is realized by
the automorphisms

n—t,n) =hnh1,
where

neN=TPX T}, heH=SL(2C),xSULL1);.

The irreducible unitary representations of N are, of
course, one dimensional and we denote them by

(a,b}p, 7) = exp{i(ap + bﬂ)],

where the pair p, 7 of vectors is referred to as the
character of the representation. The set (ab | p7) of all
representations is the character group N, For each

h € H,the automorphism £, defines a one-to-one map-
ping of N onto itself. If,under ¢, a = a’ and b > b’, then,
using (2. 3}, we find that

(@b’ lpny = lablpn),
where
P = eMlp + e a1y,

7= e—?\(l ‘—QG)A-ITT — eth—lp. (2. 12)

One easily checks that
(plﬂl)z _p72n12 — (pﬁ)z ,__p277-2’

so that [by comparison with (2.11)] we verified that #,
defines the orbits in N. The liftle groups of Xy are
those subgroups of H which leave a given point of the
orbit fixed, i.e.,for which in (2.12) we obtain p’ = p,
m’ = n. To find the possible little groups, we have to
consider five special cases.18

Case 1: p = 0,7 = 0, The little group is SL(2,C), %
SU(1, 1), itself. For a maximal set of commuting opera-
tors we may choose the union of the standard maximal
set for SL{2,C) given byl16
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T2 — N2 = 3J,,J*,
T2, and T,

and of the standard maximal set for SU(1,1) given byl7

TN = €00 T 5 1o

=13 —-12+1% and I,.

Thus, the maximal set is £ = {T2 — N2, TN, T2, T4, 12, I}
and the canonical basis functions are labeled as

T @19

where the upper labels fix the representation and the
lower ones are state labels.18 Note that €; = 0,8, = 0.

Case 2: p = 0,7 # 0. We have to further distinguish
the subcases where 72 > 0, 72 < 0, 72 = 0. We then
find the little groups

' SU(2) if 7 is timelike,
S0(1,1),- x -, 8U(1,1) if 7 is spacelike,
Z E@2) if 7 is lightlike.

Here SU{2), SU(1, 1), E(2) are the familiar little groups
that occur for the Poincaré group!? and SO(1, 1),- is the
{noncompact) one-parameter group generated by I- =

I, — I3 = 8. If we define

1
A== EGHUPOJUPH",

. (2.15)

then V, V# is an effective Casimir operator for the Poin-
caré factor and V4 generates the SO{2) subgroup of the
relevant Poincaré little groups. Furthermore (since
p = 0), Egs. (2.10a), {2. 10b) tells us that now the Casimir
operator €, = 0 and
Coy = SM2y, {2.16)
For the maximal commuting set we can now choose T =
{€4, v2,V 4,11, } and the canonical basis is

v =¢% ().

2
& A

(2.17)

Case 3: p = 0,7 = 0. Similarly to the previous case,
we find the little groups

[ SU(2) if p is timelike,
S0(1,1);+ X 1SU(1,1) if p is spacelike,
( E(2) if p is lightlike,

where SO(1, 1)+ is generated by I* = I, + I; = C. With
the usual definition

W, = 4e,,,,d"°P° (2.18)

I

of the Pauli-Lubanski vector, W,‘ W# and W4 become
state labels. Furthermore, €,=0and
@ = CP2y. (2.19)

We choose the maximal set = = {€,, W2, W, P,}, and
the canonical basis is

Y=y {p). {2.20)

2
W2, W,

Case 4: p = 0,7 = Obut p and 7 are parallel, We
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write 7, = dp“ and so 7 can be suppressed in the follow-
ing. The little groups are

SSU(Z) if p and 7 are timelike,
S0(1,1), x 4 8U(1,1) if p and 7 are spacelike,
zE(z) if p and 7 are lightlike,

where now SO(1, 1), is generated by

_(+ay, (1 —d?)
a2 d

Y =21 I .

For state labels, we can choose either W2 and W4 or
V2 and V4 (because p and 7 are parallel); for definite-
ness we take the former. We have €; = 0 and

C,¥ = P2(d2S + C —dD)y = (SI12 + CP2 — DPI)Y.
(2.21)

We choose the maximal set T = {€,, W2, W, P, }, and
have the canonical basis
— %2
v=u (). (2.22)
Case 5: p # 0,7 # 0,and p and 7 are not parallel.
The little group is the trivial identity group e, X ¢, = e.
Now €, = 0,C, = 0 and the maximal set may be taken

to be Z ={€,,€,,P,, I }, to which corresponds the
canonical basis

Y =y®C(p,m). (2.23)
We systematically obtained in the above manner all five
possible cases of induced representations. However,
from the mathematical point of view, the Cases 2, 3, and
4 are equivalent. This is formally evidenced by the fact
that the little groups for these cases are isomorphic to
each other. The reason for this equivalence is that, as
seen from (2. 12), a pure C-transformation (A =1,

xA=0 =0, @ #0) can transform a pair (p = 0,7 # 0)
into a nonvanishing but parallel pair (p = aw,7) and vice
versa. Similarly,a pure S transformation can transform
a pair (p = 0,7 = 0) into the pair (p,7 = op) and vice
versa. Thus, in effect, we have three classes of irre-
ducible unitary representations20:

ClassI : Casel 1€, =0, €,=0;
Class II : Cases 2,3,4: ¢, =0, €, #0;
Class III: Case 5 i€, 70, €, =0

Class I representations do not describe particles, be-
cause the momentum is identically zero.

Class II representations (as exemplified by the detailed
consideration of Case 3) satisfy all requirements that
one would expect from a representation corresponding
to an exact symmetry. Since the labeling set of opera-
tors is = = {€,; W2, W, P }, we see that the only con-
tinuous state label is the momentum vector p. We have
the usual spin and spin component state labels2! pro-
vided by W2 and W,. The value of the Casimir invariant
@, = CP2 (which can take on any real value) is closely
related to the squared mass. Finally, as will be seen in
Sec. 4A, the Hilbert space which carries the represen-
tations corresponds to a meaningful realization of exact
dilatation symmetry. It should be observed that spin
(corresponding to W2) is not a Casimir invariant, but is
only a state label, which means that any fixed represen-
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tation will contain all possible spin values, both integral
and half-integral. In other words, each representation
can be reduced into subrepresentations with arbitrary
given mass and spin.

Class III representations involve, apart from p, the state-
variable 7 which has no direct physical interpretation,
and the same holds for its Casimir invariants. Further-
more, these representations cannot account for particle
spin (even though it is not difficult to see that they yield
total angular momentum labels22), Finally, as will be
discussed in Sec. 4A, the unrestricted Hilbert space of a
Class III representation corresponds to broken (rather
than exact) dilatation symmetry. In spite of their un-
suitability for accommodating a classification scheme
for exact symmetry, the representations of Class III are
far from being useless, and in fact they must be used
when questions of broken symmetry are investigated.
We shall come back to this point at the end of Sec. 4A.

After having familiarized ourselves with the major phy-
sical aspects comprised by our group, we now turn our
attention to its possible applications to dilatation phy-
sics.23

3. DILATATIONS AND 3C;

A. Tensor-spinor calculus and scale dimension

One of the captivating features of our ¥4 group is that
dilatations occuv as par! of a semisimple subgroup,viz.,
of SU(1, 1), generated by D, S,C. This fact permits us to
establish a classification scheme relative to dilalation
behavior which will resemble an isospin classification
scheme. We point out that when dilatations are treated
in the usual framework of the conformally extended
Poincaré group (sometimes called the Liouville group),
there is no analogous treatment available.

Following the well-known pattern, we must study the (non-
unitary) finite-dimensional representations of SU(1, 1),.

It will be convenient to introduce the notation

GO=D/2=1, G =C=I,+I;, G =S=1I,—1,.
(3.1)

Here G* and G~ are raising (lowering) operators for the

eigenstates of G®. We also define a “spherical vector”

Gl, o =0,+1,— 1,by setting
Gy=Go=D/2=1,

Gl = 271/2G = 2°1/2C = 271721, + 1), (8.2)
Gl = 271/2G- = 271/28 = 2°1/2(1, — I,,).

The commutation relations are
[6},61,] =+ iG},, [G,6L]=—iG},  (3.3)

and the Casimir invariant of SU(1, 1)1 can be written as

I2 = (G})2 — 3G +GL)2 + 3G —CL)%,  (3.4)
which is formally the same relation as one has for the
Casimir invariant of SU(2) in terms of spherical com-
ponents. By definition and in consequence of (3.3), the
transformation law of an arbitrary spherical vector V1
is given as

(G}, V1,] =+ iVl,,
(G VBl =7 V.,

[G1,, Vi, ] ==#iV},

(63, V] = 0. -9
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One advantage of using spherical vectors is that each
component Gl spans a one-dimensional (nonunitary) rep-
resentation for the 79 dilatation subgroup generated by

= G99, Because of its obvious physical importance, we
study these representations.

The (nonunitary) representations of T2 have the form

gl x = it 2y, (3.6)
where A is the parameter of dilatation and? = 0,+ 1,+ 2,

If X is a tensor (or spinor) operator belonging to
the representatlon of TD characterized by [, then,
clearly,24

e i DX eirAD = glrX, 3.7
or, in infinitesimal form,
[D,X] = ilX: (3.8)

This reveals the meaning of I: lhe inlegev I is precisely
the scale dimension of lhe dynamical obsevvable X.
Furthermore, since D = 21, = G%, it is clear that for any
lensoy (ov spinov) opevalor X" of SU(1,1), the spherical
componenl subscvipl a is exactly one-half of the scale
dimension of X%. A further important remark is that, in
general, lhe (physical) scale dimension is differvent from
the naive (geomelvical) dimension.25

We now study the tensor (spinor) transformation be-
havior of the generators of 3, under the SU(1, 1), sub-
group. We find that

21/2C Gl
(a) G=|D/2 =| G}
2-1/28 G,

is a vector, as already stated.

(b) J,, is a scalar.

1/2
© u= <H“> : <K11/£2>
Py K172

is a fundamental spinor and

u=(P,,—

is its conjugate (contragredient) spinor. Observe that
uu = 0,as it should be. From the explicit form of # and
Gl we get

1/2 _ p1/2
Qu) = (K1/2’ 1/2)

1 .1/2 1 L 10172 1 plr
(GorKii7e]l =2 2K, Y [GL1r K Y] =0

(3.9)
1/2 , 1/2
[Gil’ 2172) = F GN2K T
which, then, determines the transformation law for an
arbitrary fundamental spinor V1/2 (o = + 1/2).

We can now construct tensor (spinor) operators in the
enveloping algebra. The simplest examples are collect-
ed in Table I.

One implication of this classification scheme is that
when, on physical grounds, we know that a certain dyna-
mical observable has a definite scale dimension, we can
expect that it will have “partners” of different scale
dimension, together with which it forms an SU(3, 1),
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TABLE 1. Some simple covariants in the enveloping algebra. Nole: AB means
the Hermitian product 3{4, 8}.

SU(1,1), Lorentz
trans- trans-
formation Scale Scale formation
Symbol Definition property dimension  parity property
antisymm.
o = _ .
Vg Rw = PMHU PUHu scalar 0 tensor
vl I +2
'L v symmetric
vy 1/¥y2(p, 01, +P,I,) vector 0 +
# # tensor
vy PP, -2
172 1
Vv CP¥ — 5 DII¥ +1
+1/2 e 2 R not
v STIH + L DPs 2 spinor applicable ¥ &°tOF
2 T 2
v coe +3
v, cpe + DIk +1
g x = 3 spinor not vector
V32, snw + Lppe 2 =) applicable

372
Vi

5

-3

tensor (spinor). Application of these ideas to currents
are planned to be discussed in a later publication.
B. Scale conjugation

Inspection of the Eqgs. (2. 5a)—(2. 5j) reveals that the Lie
algebra of 35 admits the following, rather remarkable
involulive outer automovphism:

P, -1, §S-—-C, C--S8

D—- —D,

m, -»P
B ’(3.10)
J w7 Juv
We shall call this new symmetry transformation a scale
conjugation, because of its strong resemblance to charge
conjugation (or G-parity) for isospin multiplets, as will
transpire below. Scale conjugation (3.10) can be repre-
sented by a unitary and self-adjoint operator26é D:

DSD1=—C,

- (3.11)
DJ,, Dt =,

DP, D=1,
DCD 1 =—8,

DI, =P,
DDD1 = — D,

Since D2 = 1, the possible eigenvalues of Dare+1, We
shall call the eigenvalue of D scale pavify. Equation
(3.11) shows that D has negative scale parity.27 Con-
sequently, only those dynamical observables can have a
sharp scale parity which have zero scale dimension. In
general, D causes transitions within SU(1, 1); multiplet
members. For example, the neutral component G} of
the vector G} has negative scale parity, and, under D,
we have the transitions Gl, » — Gl and G}, — G,
Following the convention for the classiﬁcation of inte-
gral isospin meson multiplets relative to G (or C)
parity, we may say that G1 has negative scale parity.

On the other hand, the vector V1 of Table I has positive
scale parity, since under D, we have Vi - v§ (and

VL «—> V2 ) SU(1,1), scalars have always sharp
scale parity (because they have zero scale dimension).
For example, the Casimir operator I2 of SU(1, 1), has
positive scale parity, as can be seen from Eq. (3.4). On
the other hand, the scalar V3 =R, of Table I has nega-
tive scale parity. We observe that the Casimir invar-
iant €, of ¥ has positive scale parity (i.e., it is also
an invariant for the extended group), but the second
Casimir invariant €, has negative scale parity (so that
it is not an invariant for the extended group).

It is interesting to note that in the usual treatment of
dilatation symmetry within the framework of the con-
formal group, there is no room for a scale conjugation
automorphism.28 Further exploration of our D-sym-
metry is relegated to a later study.
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4. SOME ASPECTS OF BROKEN SCALE INVARIANCE

A. Scale invariant subspaces

Whereas the group ¥, incorporates dilatations, it by no
means implies exact scale invariance. In fact,as we saw
in Sec. 24, S and C generate dynamical development and,
since D does not commute with these operators, it can-
not be a “constant of motion”. Thus, we have a broken
symmetry, and it becomes necessary to find conditions
for a meaningful implementation of exact dilatation sym-
metry. This means that we must search for a subspace
of the Hilbert space of states which is left invariant
under D. Naturally, we must have this subspace in-
variant also under the whole kinematical subgroup, which
is SL(2,C); ® (T{ x TY). A subspace is selected by a
subsidiary condilion % = 0 and, to have this subspace
invariant under the transformations listed above, we
must have

Q(Hu\,l/) =0.

Q@y) =0, QU,¥) =0, 2PY) =0,

These conditions are met if we find an operator  such
that )

[D,8] = ¢4,
[0,,R] = c,Q2,

[ Q] =8, [P,,Q] =c30,

(4.1)

pu?

M

where some of the constants ¢, may be zero. Inspection
of our Lie algebra (2.5) reveals that P2,112, or PII are
three possible basic choices for © to satisfy Eq. (4.1).
Correspondingly we have:

Choice (a): The subsidiary condition is P2y = 0.
This is not unexpected since it is well known that the
dynamics of massless particles obeys scale invariance.
The novelty is that, as easily seen, the subspace is also
invariant under S.

Choice (b): The subsidiary condition 12y = 0 gives
the interesting result that, in our framework, we can
have scale invariance for massive particles too. It is
also seen that this subspace has the additional invar-
iance under C.

Choice (c): The subsidiary condition PIlY = 0 also
permits scale invariance, but this possibility is not
attractive because neither of the dynamical development
operators C or S leaves this subspace invariant, In addi-
tion, the condition PIlY = 0 imposes an undesirable kine-
matical restriction among the components of P and II:
For example, if P is timelike, [I is constrained to be
spacelike.

We remark here the following. The Class II representa-
tions of ¥ are already so restricted that we have exact
scale invariance. This is so because in this class €; =

— 1R2 = 0, s0 that @ = R2 trivially satisfies the require-
ments of Eq.(4.1). In contrast, the vepresentations be-

longing to Class Il are precisely those which permil the
study of symmetrvy breaking in massive hadron systems.

Here the exact scale invariance conditions are not auto-
matically satisfied, and we select the exactly invariant
reference system by imposing the condition 12y = 0. In
the next subsection we shall show how broken symmetry
arguments may lead to a mass spectrum.
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B. Mass spectrum from broken symmetry

In the real world, the symmetry of ¥ is certainly badly
broken by the dynamics of interactions. Consequently,
the squared mass operator 92 cannot be an invariant of
5. But we expect that part of the SU(1, 1), symmetry,
namely dilatation invariance, survives in first approxi-
mation. This means that we can write29
M2 =A(1 +4B), (4.2)
where A, the unperturbed central squared mass, and the
constant y depend only on the Casimir invariants of 3,
whereas B is a component of a tensor operator of
SU(1, 1); which is invariant under the T} dilatation sym-
metry subgroup. Moreover, B must be invariant under
the entire kinematical subgroup SL(2,C), ® (T§ % TY).
Thus, B should be constructed from Iy Pp, I, it should
have zero scale dimension, but it should not be invariant
under § and C. The simplest choice for B is to take the
neutral component of an SU(1, 1), veclor. It is easily
seen that the lowest order polynomial in the enveloping
algebra which meets these requirements for our vector
operator is given by3©

Z}l = 273/2JaBJaBH2 — 2—1/2JauJBuH0(HB’
ZY = 3 gJOBPIl — 3J  JBK(PeIl, + TTP;), (4.3)
Z}l = 2-3/2JaﬁJaBp2 — 2—1/2JauJﬁpPapﬂ,

and, in accord with the preceeding arguments, we take

B =27} = 3J,JBPU — 3J  JBK(Pell, + TI9P,).  (4.4)
We now want to calculate the expectation value (9N2). In
view of the discussion given at the end of subsection 44,
we select a representation of Class III and {so as to
have, in our approximation, exact dilatation symmetry)
take the subspace for which the 12y = 0 condition is
met,

To do the calculations, it will be necessary to use a
basis other than the canonical basis given by Eq. (2. 23).
The new basis can be obtained by considering the chain

35D (SL(2,C), X TR) & (T2 x T D SL(2,C), X T
D SU(2)p 2 SO(Z)T3
and taking for labels the Casimir operators in each link

of the chain.31 We thus get32 the new maximal com-
muting set

T’ ={e,, @4, WV, P22, P, D,JJ,JJ*, T2, T},
where

JI = d,, 00 JIY =€, JIP0, T = ([gg,Jd31,d15).
The basis corresponding to =’ is unitarily equivalent to

the original basis which corresponds to Z.

We are now prepared to calculate ( B) for states in our
subspace. We take a res! frame in which P = (P; 0, 0, 0)
and observe that, since we have the subsidiary condition
2y =0, Eq.(2.11) gives €, = (PII)?, so that further,

in our rest frame,

Pl = Pl = Pyl| =v€,.

With this in mind, an elementary calculation gives33
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(B) = V& (5, /4 + N2) — P(J1+(N X T) + iPll-N. (4.5)

At this point we recall34 that

3d,,JH = T2 —N2 = k2 +¢2 — 1, (4. 6a)

3€,,,0J#JP° = T*N = dike, (4.6b)
where, for the principal series,

E=0,51,%,--- and —ow<ic<+ o,
but we must take ¢ = 0 so as to have normalizable
states. Then (4. 6b) gives

TN =0. (4.7

We further recall that in the rest system T becomes the
spin, so that

T2 = s(s + 1), (4.8)
where s = B,k + 1,k + 2,---., We need one more calcu-
lation to evaluate (4.5). With V, = éewpoJ”PHO we have,
by symmetry, V II¥ = 0, and since IT islightlike, this
implies the parallelism or antiparallelism V, = FI,.In
detail, this gives

T, +NXII=/0 and TIO=-—fI

which, using (4. 7), leads to

Nell = 0and T X II = — NII,. (4.9)
Substituting these results into (4.5) and using (4. 6a)
(with ¢ = 0), we eventually get

(BY =€ [2s(s + 1) — 3k2 + 2],

so that, finally, our broken symmetry mass formula (4. 2)
can be written in the form

(M2) = +B[s(s +1) —§ k2], (4.10)

where ¢ and B are (unknown) constants,

Totest thisformula, it must be remembered that approxi-
mate dilatation invariance is presumably a reasonable
approximation only at higher energies which, when visu-
alizing elementary particles as excited dynamical sys-
tems, implies that our formula may be reasonable for
higher mass level sequences, and cannot shed light on
the lower sequences (like the familiar octet or decuplet).
It appears35 that the first nucleonlike higher mass spin-
tower starts with the N”(1780) and N(1860) states (s = %
and &, respectively). Assuming that & = $ for these, and,
using their masses as inputs, we determine the para-
meters to be ¢ = 3.1 and 8 = 0.1 BeV2, respectively.
Table II shows the numerical results obtained with these
input data, for a series of £ = 3 nucleon states, then for
a k =3 sequence36 of A-like states, and, finally, for a

k£ =1 meson tower.37 Even though there are several
reasons why one should not take a broken symmetry
mass formula and its confrontation with the often hazy
data too seriously, we find it rather impressive that, for
this wide variety of quantum numbers, the agreement
with experiment is extremely good. It is also worthwhile
to note that, as expected, the accuracy of the formula
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TABLE II. Mass levels from broken symmetry.

Error

Symbol (and {(onz) M2 Stand.
resonance channel) 4 s calculated experiment dev. A
N"(1780) P}, 3 B input 3.17+ 0.51
N(1860) P 4 i input 3.46 = 0.57
See Footnote a H 3 3.98 See Footnote a
7.1990) F 5 I 4.87 3.96 +18
N(2220) H 4 B H 5.57 4.93 2 0.65 1 +13
N(2650) 2 4 6.67 7.02 £ 0.95 § ~5
A(1690) P ER 3.31 2.86 +16
A(1890) F o4 3 3 3.81 3.57+ 0.49 4 + 7
A(1950) F 4, p B 4,51 3.80+ 0.39 <2 +18
See Footnote b 3 5 5,41 See Footnote b
A(2420) i o 6.51 5.86 + 0.75 <1 +11
A{2850) H A 7.81 8.12+1.14 H — 4
R(1750) or I111(1764) 1 1 3.23 3.09 +5
5(1930) 1 2 3.68 3.72 -1
X7(2086) ? 1 3 4.23 4,37 — 3
T(2195) ? 1 4 5.03 4.84 + 4
X7(2500) 1 6.25 (=3

or:? 1 5 6.03 - < to
v(2375) ) 15.57 + 0,07 I+ 8

a There is no N state with ' in this region, but there is the A(1815)F65 with
M2 =3,30= 0.15 and the ©(1915) with M2 = 3,65 + 0.13. The expected octet
partner &V would fit well the calculated value.

b There is no A known with 3%, but there is the spin 3" ¥ (2250) with 92 =

5.06 + 0.37, which, if a partner of the missing A, fits well the calculated value.

seems to improve as we go to higher masses, say to
above 2000 MeV.
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APPENDIX A: THE GALILEI GROUP IN PHASE SPACE

The standard defining transformations of the Galilei
group G, are given on the E5(q) X E;(¢) carrier space
as follows:

X Q1;:Rqu]':
=1,
'34L=qk+ak7
' t=t,
qu;_qk+vkt,
=t
H:SCI;ZZ(I;,,
[t =t +7.

Performing the transformations in the order J, G, P, H
we have, in a condensed form,

q =Rq +vi +a,

Al
tr=t+r. (A1)

Denoting a group element by g = (1,a,v,R), we easily
obtain the composition law

gg=("+r7,a" +R'a +7v,v' + R'V,R'R). (A2)
On the other hand, from the transformations (1. 3a)-

(1.3d), defined on the carrier space E,(x) X E4 (&), we
find, using the same order of transformations as above,
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=Rx—178) +a—1v,

£' =RE +v. (A3)
If we compute from here the composition law, we get
precisely (A2). This proves that the two groups, defined
on different carrier spaces, are actually isomorphic.
Thus, the group of canonical transformations (1. 3) in the
phase space is simply another realization of the familiar
Galilei group. QED

APPENDIX B: A NONLINEAR REALIZATION OF 3¢,

Let E, ;(x) be the usual Minkowski space and let E 1 @)
be a one-dimensional space. Consider the followmg
transformations on E; ;(x) X E,{u):

x! =A xP
e pp~ 2

Iy i (Bla)
x' =x, ta

P, L (Blb)
u' =u,
x! =x, +b,u,

n“.% ’,‘_ b (Blc)
u' =u,
X, =

. {TH T (Bld)
u' =u + o,

C: Fi -x"/(l — o), (Ble)
w =u/(1 — ou),

AND HUDDLESTON

x' = eMx
. n u?
Di i son (B1f)

Performing the transformations in the order J,11, P, S,
C, D, we get, in condensed form,
X' = <Ax +bu +a
1—-aw +0))

w —enf_®*to N\
1—au +o0)

Denoting a group element by g = (\,a,0,a,b,A) and
computing from (B2) the composition law, we get pre-
cisely the same result as given by Eq. (2. 3) for the com-
position law of the group defined on E, , (x) X Eg,(£) by
the Egs. (2. 1a)-(2. 1f). Thus, the group defined by the
transformations (Bla)-(B1f) is isomorphic to our group
35. But the realization of ¥, on E, 1) X E; () is non-
linear, as is evident from (Ble).

(B2)

1t is interesting to note that the nonrelativistic analog of
the transformations (Bla)-(B1f) [when the carrier space
is E4(q) X E,(t)] is precisely the set of defining trans-
formations for Hagen's “conformal Galilei group” (cf.
Ref. 2). Thus, our ¥, is essentially the relativistic gen-
eralization of this group.

We also observe that if we omit the C and D transforma-
tions (i.e., set @ = 0,x = 0), then Eqgs. (Bla)-(B1d) be-
come the original defining transformations of the group
G5 whose central extension was the major topic of study
in Refs.5-8.

!In this paper we denote direct products of groups by X and semidirect products
by ®,

2See C. R. Hagen, Phys. Rev. D 5, 377 (1972); and also P. Roman, J. J. Aghassi,
R. M. Santilli, and P. L. Huddleston, “*Nonrelativistic composite elementary
particles and the conformal Galilei group,” Nuovo Cimento (to be published);
as well as U. Niederer (Zurich U.), Preprint, March 1972.

3Throughout this paper, goo = 1, g1 = —1, 8¢ = 0 (k #1).

4 A further comment on this point will be given in Footnote 13.

5J. J. Aghassi, P. Roman, R. M. Santilli, Phys. Rev. D 1, 2753 (1970).

6J. J. Aghassi, P. Roman, R. M. Santilli, . Math. Phys. (N.Y.) 11, 2297 (1970).
73. J. Aghassi, P. Roman, R. M. Santilli, Nuovo Cimento A §, 551 (1971).

®R. M. Santilli, Particles Nuclei 1, 81 (1970).

°In our earlier work, we actually concentrated on the central extension g5 of
this group. These efforts met with limited success.

'%In Appendix B we give another, nonlinear realization of the group, on a smaller
carrier space.

' The unit element is (0,0,0,0,0,1).

2 This is analogous to the situation in the nonrelativistic JC4 (and 34) group, as
was noticed originally by Hagen, Ref. 2.

'3 Forgetting the manner in which we arrive at 3¢5 as a group of canonical trans-
formations, one may wonder whether a doubling of the Lorentz part (one acting
on x, one on £, independently) would serve a purpose. However, an elementary
caleulation with Jacobi identities reveals that then SU(1,1) must commute with
the rest of the group (which would consist of the two Lorentz and the two trans-
lation groups), so that we would have an entirely trivial structure, without any
link to dynamics.

Y4For a simple account of this method, see, for example, G. W. Mackey, Induced
representations of groups and quantum mechanics (Benjamin, New York, 1968),
or the brief summary by G. W. Mackey, Group representations in Hilbert space,
which is the Appendix in 1. E. Segal, Mathematical problems in relativistic
physics (Amer. Math. Soc., Providence, R. 1., 1963).

!5 The procedure to be followed is a combination of the standard method for find-
ing the little groups of the Poincaré group [E. P. Wigner, Ann. Math, 40, 149
(1939)] and of the work of E. Inonii and E. P. Wigner, Nuovo Cimento 9, 705
(1952), in which they obtained the little groups of the nonrelativistic Galilei
group G, . Our results resemble closely those of the latter paper.
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' 6We adopt the notation T = (J33,/31,J12) and N = oy S 02,/ 03)-

!7Note that Eq. (2.7) tells us that /, generates the compact SO(2) subgroup of
our SU(1,1). Of course, instead of the state label I, we could use any other one,
like I;.

18 We shall adopt the same notational convention in all subsequent cases too.

19 These are the covering groups of SO(3), SO(2,1), and the Euclidean group
E(Q2).

20The situation resembles closely that which is found in the classical Galilei
group G4;cf. Ref. 15.

21Naturally, we consider the subcase when p? >0, so that the Poincaré part of
the little group is SU(2).

22 This can be seen by introducing a noncanonical basis and will be discussed in
Sec. 4B.

23For a well readable survey of dilatation physics in the framework of quantum
field theory, see, for example, P. Carruthers, Phys. Rep. 1, 1 (1971), 01 S.
Coleman, “‘Dilatations”, in The Proceedings of the 1971 International Summer
School of Physics Ettore Majorana, edited by A. Zichichi (in press).

29 Recall that D= 21;.

25 This can be seen from the defining transformations (2.1) which show that the
parameters 4, and b, have the same dimension as the coordinates whereas all
other parameters are dimensionless.

26Qbviously, D is outside the enveloping algebra.

27 This is analogous to the fact that electric charge Q has negative charge parity.

28 The commutator between the generators K, of proper conformal transformations
and the momenta P, is [Ky, Py, | = -2i(gy, D+Jy,,), and this prevents the imple-
mentation of a scale conjugation.

29 The subsequent arguments are analogous to those used, for example, in the
derivation of a mass formula for broken SU(6) symmetry.

307t is interesting to note that (apart from a normalization factor) Z%, is the
standard W?, ZL, is its analog V2, and Z} is W, V&,

3! The procedure is the same as the one which is used in the Poincaré framework
when an angular momentum basis is introduced in place of the canonical one
by taking the chain ® D SL(2,C) D SU(2) D SO(2).

32 Opserve that the Casimir operators of (SL(2,C) X T2)Y®(Th X T) are
WV,P?112,P1 and those of SL(2,C);X TP are D,JJJI*.

33For the notation T and N, see Footnote 16.
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34Gee, for example, 1. M. Gel’fand, R. A. Minlos, and Z. Ya. Shapiro, Representa- 3¢ Here k cannot be 1/2, because no s = 1/2 member occurs in the A-type family.
tions of the rotation and Lorentz group (Pergamon, New York, 1963). 37 All baryon states considered have positive parity. For the meson states, there
335 All particle data and symbols are taken from the tabulations of the Particle are considerable uncertainties.

Data Group, Rev. Mod. Phys. 43 (2), Part I1 (1971).
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We present sequences of converging upper and lower bounds to the partition function per spin specifically for a
ferromagnetic Ising model which are valid in the entire finite, magnetic-field, inverse-temperature plane. They are based
on the exact high-temperature expansions for a finite system, propertics of generalized Padé approximants, and the
Villani limit theorem. The results depend only on the general structure of the partition function and certain

monotonicity with system size properties which hold fairly generally.

An important problem in theoretical physics! is the de-
duction of exact results for the general dimension, spin-
1 Ising model. In particular, at the present time for
dimension higher than 2, methods are lacking which can
be proved to converge to compute the thermodynamic
properties in zero magnetic field near the physically
interesting critical point singularity, or even its exact
location for that matter. In this work we show how to
construct sequences of successive approximations to
the free-energy per spin which bound it from above

and below for all temperatures and magnetic fields and
converge to the thermodynamic free-energy per spin

in the limit. Our procedures can be generalized to apply
to a variety of other statistical mechanical problems,
but we have chosen the Ising problem for ease of pre-
sentation,

Gordon? showed that the generalized Padé approximant
procedure could be used to give rigorous, converging
upper and lower bounds to the free energy of a finile
system from the coefficients of the high temperature
expansion, At the time his results did not seem useful
for thermodynamic systems because the necessary
coefficients diverged with the system size. Recently,
however, Villani3 and Fogli e/ al.? have, in another con-
nection, shown how to usefully employ particular types
of series with all divergent coefficients. By generalizing
their results, and by establishing a monotonicity property
of the free energy, we have been able to obtain conver-
gent upper and lower bounds to the free energy. By
differentiating these successive approximations to the
free energy, we, of course, obtain convergent approxi-
mations to the various thermodynamic properties.

We remark that, based on the theorem of Lee and Yang,5
it has previously been shown® that converging upper

and lower bounds on the magnetization can be given for
H = 0. Also Gallavotti ef al.7 have shown for H = 0 and
T large enough that the free energy is analytic, and hence
exactly obtainable from the power series expansions.
We extend our present results to cover the whole H-T
plane, T > 0.

We introduce our Ising model Hamiltonian in the follow-
ing form:

=7, Ji {1 — cicj) —m 20k, (1)
i i

The partition function is then
z= 2, exp(—px. (2)
{o5==1}

We restrict the interactions to be ferromagnetic, J;; = 0,
and will normally take %, = H, the magnetic field. Ijnder
these restrictions we can prove the following mono-
tonicity property:
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[1/#(24)]InZ, , = [14(4)] InZ,, (3)

where A is a set of the underlying lattice sites on
which the spins are situated and 24 are two identical
nonoverlapping such sets, The function #(X) is the num-
ber of sites in set X. To prove this result, suppose we
consider A N B = ¢. Then

ZAuB: 2 1 eXp<_ B EAJij(l -

;7% i,j€

X exp(—- B2 Jy;(1 - oicj)>

0,0,) + pm Z}oihl)

iCA

€A
jE€B

x exP<_ B 21 J(1—0,0)) + pm Lok, “
i jcB i€eB

or,as exp[— BJ;,(1— 0,0)] = 1 for any allowed state,
Zoug =S 22y, (5)
We may rewrite Eq. (5) as

1
InZz
#(AUB) CAuB

1 B 1 1
<1, B (1l gy 1
F T o) <# TRt mZA)’ (6)

which leads to (3) when we let the interactions and under-
lying configuration of set B be identical to set A. Thus,
at least for doubling of the size of the set, we have shown
that the [InZ,/# (A)] is monotonically decreasing with
#(A). For higher dimension d we can retain the same
shape by increasing the system size by a factor of 29

per step, which is to say doubling in each direction, We
remark that the fundamental inequality (3) really depends
only on having an interaction of fixed sign and is sus-
ceptible to wide generalization.

We next quote our modified version of the Villani limit
theorem.,3

Theorem: Let there be a sequence of functions f, (X)
with the properties

(@) £,(1) =2, lim £,(x) = 2, f,(x) <2, 1< x <,

(b) lim f,(x) = flx), 1= x <o, imflx) = A <2,

(c) flxq) = flxy), x1 = xg,
(@) f,(x) = fln), 1= x <,

Then there exists an infinite sequence of minima of
f,(x}, x, such that
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lim x, = o, (7N
n-—ooc
lim f,(x,) = A, (8)

where by properties (¢) and (d) f,(x,) = A for all n.
Proof: By property (a) there must exist at least one
minimum of f,(x). By properties (b) and (c) the f, (x)
can be made to agree arbitrarily closely to a monotoni-
cally decreasing function f(x) over any pre-assigned
range 1 = x <= R < o, Thus by choosing » large enough
we must have a minimum at least as large as R. Thus,
as R can be as large as we please, we have result (7).
For any € > 0 we can by (a) and (b) find an R(x, €) such

that |f(x) — f,(x) < € for 1= x < R, It must be, by (d)
and (c), that
fR) + e=f,(R)=f,(x,)=flx,)= A (9)

but, as R(n, €) - ©, as n - », Eq. (9) implies that the left-
hand side of (8) differs from the right by at most €. As
¢ is arbitrary, we therefore conclude (8).

The final step in establishing such a convergent bounding
sequence is to exhibit such a sequence of /, (x) for (Zy)1/¥,
To this end we, with Gordon? consider the Stlelt]es in-
tegral

N
Zy=J;

where I’ Nis an upper bound on the total energy in any
state implied by (1) and dp, = 0. We approximate

e-bE dp (), (10)

Zy = \B, /B) :Z} byB* +Z}ame~60m, (11)
£=0 m=1

where the ¢a,,b,, and o, are determined by equating the

coefficients of Bgs, 0 <'s< 2n+ j,in Z, () and B, J(B)

The properties of these approximants are wellknown.2:6.8

Briefly

(— DI,B, B — 4B, B =
(_ 1)1+j[NBn,j(B) - Nb}’l_‘l,jﬁ 2(6 ] 05 (12)
NBn.O(B) = ZN(B) = NBn,—l(B)’

where 7 = —1, and it is certainly sufficient that the ra-
dius of convergence [by (10}] is finite to insure
lim NBn,j(B) = Z{8),

n-—>oo

0=g8<w,j=—1, (13)

Finally,all o, > 0. From these results we can now veri-
fy that

L (N) = [yB, o@)VN, fIN) = [z,{8)]/¥,
A(B) = lim [Z,(8)]1/¥ (14)
N—oco

satisfy all the conditions (a)~(d) of the limit theorem.
The allowed values of N are restricted to 274, as those
are the only ones for which we have proved (c¢). How-

ever, as by the linked cluster theorem,we expect f(N) = f, +

fi/N + +++, we expect (c) to also hold for all N large
enough. Condition (a) follows from Z,(8) = 4B, B8 =2,
the result that all o,, > 0, and an inequality obtamed
from the direct asymptotlc solution for large N, 27C, 8)
X Nnln+l) < o(8) = 2%, Thus by the limit theorem
and the propertles of the B's we conclude that
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1im [y B, o(8)]1/4) = Ap),

[ (B0 @Y™ = Ag).

We can also deduce convergent lower bounds to A(8) in
a similar way. Let us consider an Ising model with only
nearest-neighbor interaction and coordination number
g. There is no difficulty in greatly relaxing this condi-
tion. Then if instead of (1) we pick

(15)

R = 2 J1+oo)—m 2500, (16)
nearest ¢
neighbors
it is easy to show
lim [Z,(8)]1/¥ = e-aBIA(p). am

N -0

But for Z the fundamental inequality (3) is reversed as
exp[J(1 + 0,0,)] = 1. Clearly the conclusions of the
limit theorem ‘are equally valid if the inequalities are
reversed for a monotonically increasing function instead
of a decreasing one. A slightly more involved argument
is required as lim,_, f,(x) # 2 here, but lim_f,(x)

= f(x) in this case turns out to be adequate. The results
(12) change as the energies are now all negatlve instead
of positive as before. The conclusion is that every Bis
a lower bound. Consequently, we conclude

Um [ynB, (B)]1/N = Ag)eads,
. (18)
[N(n)Bn,j(B)]l/N(n) = A(B)G‘ZBJ’

where j = 0,— 1 are best for a fixed number of coeffi-
cients and N(x) here is determined by maximizing.

Hence we have constructed rigorous converging upper
and lower bounds for the partition function per spin or
equivalently the free energy per spin. By standard ther-
modynamics, we can by differentiation of these sequences
of approximants generate convergent approximants for
the various thermodynamic variables.

As a simple illustration, we will apply these results to
the linear chain in zero field. Here, denoting gJ by K,
we have by direct calculation

N-1
Zy= 7, exp< KE(I
az-—“:l

:21\/[1_
_(17(

and also

1 z+]_)> = 2(1 +e—2K)N_1

(N— 1K + L N(N— 1)K2

— 1)2(N + 2)K3 + » - (19)

Zy=2(1 + e2K)N-1
=251 + (N— 1)K + § N(N— 1)K2

+ (N — 1)2(N +2)K3 + -+, (20)

Equations (15) and (18) become, for B, ,(8) and yB,_,(8)
which use the K2 and K3 terms respectlvely,

2e-2K{] exp[(N—-1—vN—-1)K]
b Lew((V 1+ VRT DR
= (1 +e2K)=< 2[(1/N) + (1— 1/N)e-|1/N (21)
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For K = 0, N = 1 extremizes to give the exact answer
as expected, For K = 1, the left-hand side is a maximum
for N near 16 and the right-hand side a minimum for
N near 4. These bounds yield

0.84<1,135=< 1,43. (22)
In the K = o limit, the best result from (21) arise when
N also goes to 16 and 4 and are 0 = 1 < 1. 38. Since
our procedure is based on the exact high temperature
expansions for finite sized systems, we expect, and find

BAKER JR.

in this illustration, that the method converges to a given
accuracy first at high temperatures and the error bound
widens manotonically as the temperature decreases,
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We obtain a simple spectral representation for the momentum space wavefunctions of the Schrédinger equation with a
Coulomb potential in the form of a contour integral. Both the bound state and the scattering solutions are evaluated as

residues at the poles enclosed by this contour.

1. INTRODUCTION

A consideration of the relativistic or nonrelativistic two-
body problem leads naturally to integral equations in
momentum space for the wavefunction describing this
system. Various methods are needed for dealing with
problems of this type,and one that can be of help!2

is that of using a spectral representation for the wave-
function, In this paper we consider the well-known
nonrelativistic Coulomb problem in momentum space.
We demonstrate in detail how the use of a spectral rep-
resentation easily leads to a complete set of solutions
to this problem.

In general, two methods have been used to obtain the
momentum-~space solutions to the Schrédinger equation
with a Coulomb potential. The first, used by Podolsky
and Pauling,3 is to Fourier transform the solutions to
the equation in coordinate space. Fock,4 on the other
hand, was able to transform the equation to a four-
dimensional hyperspace in which the bound- state solu-
tions were given by the O(4) spherical harmonics.

Our own approach in this paper is to employ a spectral
representation. We express the momentum space wave
function as a contour integral in this spectral function
space. The spectral function is determined by solving
a first order linear differential equation, and the wave
function is then obtained by evaluation of the contour
integral. Both the momentum space bound state and
scattering solutions are given as residues at the poles
enclosed by this contour.

2. BOUND-STATE SOLUTIONS

The Schrédinger equation in momentum space with a
Coulomb potential can be written as

Here we are assuming k2 is positive, so that initially we
are solving the bound-state problem. This equation is
supplemented by the boundary conditions that ¢(p) be
finite at the origin and that for p — ©, ¢(p) vanishes
fast enough for fd3p(p(p) to be finite. This last condi-
tion is the counterpart of the requirement that the
Fourier transform of ¢(p) be regular at the origin in
coordinate space.

Since Eq. (1) is O(3) symmetric, we can express the
solution as

Peem® =¥y (p2)Y (D), (2)

where Y ,,.(p) is a solid harmonic of the three compo-
nents of p,that is Y ,,, (p) = p‘ ¥ ,,, (6, ¢). We then try to
find a solution through a spectral representation of the
form

Y, ml® fc m (3)

<Pk(m(P (p2 +x)l"2’
where £, (¥) and the contour C are to be determined so
that ¢, ,,(p) satisfies Eq.(1). The ansatz of Eq. (3) is
suggested by the approach taken by Wick! and Cutkosky2
to solve the Bethe-Salpeter equation for two scalar
particles with a kernel involving exchange of a mass-
less scalar meson,

If we substitute ¢, ,,(p) into Eq. (1), we obtain the equa-
tion

ry[m(p) dx , A
it e (p? + 01 <( P gt — g’)
Y mP) & (%) (b
T raner =0 W

a

In this equation @ and b are the endpoints of the contour
C. In reducing Eq. (1) to Eq. (4) the left-hand side of
Eq. (1) has been rewritten as

3
(2 + k2) (p) = > f a3p'ep) , N
(p—p')?
where A = ma, o is the fine structure,and #2 = — 2mkE,
|
(0% + 1) @ m®) = Y P Jc dx &, (2) (( el

= Y@/ ——d"—)—l (s -

(P2 + x

where the last step follows after an integration by
parts. The integration over p’ in the right-hand side
of Eq. (1) is done using the parametrization method of
Feynman:

m
5 Jay B a0 f v

2—x) d 1
£+1 )

dx (p2 + x)*1

{+1

1 1 k2 —x)g ()
B2 N
&t £+ 1 ( x)g‘> (£ +1)(p2+x)"1

e

[
_oox (28+ 1!
T 2201 (¢ + 1)! Ymle
fl du u!
0 (1 — u)l/z (x + up2)3/2"’(
dx g.
Yom) fo B ©

x1/2(x + p2)e+1

fc dx g, (x)

£+1

This result is valid for x restricted to the cut complex
x plane with the cut running from 0 to — « along the

y fl du(f + 2)(1—u)*1y,,.(q + up)
0 [q2 + (1 — u)(x + up2)]¢*3
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negative real axis. If the contour C is chosen in this
region so that there is no contribution from the inte-
grated term in Eq. (4),then g (x) must satisfy the equa-
tion

(k2 —x)g,/ +lg, —rx"V2g, = 0. (7)

The solution to this equation is given by
b+ x1/2\ Nk
gmm=A“w2—w‘< ) ®)

b x1/2
where the constant A, , is determined by normalizing the
solution.

In order to simplify the analysis, we make the change of

variable x1/2 =y, Then
/b +a\ ME
( ”> )
k—y

® / dy y(k2 —y2)
“ (p2+y )‘+2
The contour C is now restrictedinthe complex y plane to
the regionRey > 0 or Rey < 0. The contour must not, of
course, crossthe Rey = 0 axis wherethe factor (p2 +y2)(¢+2)
is singular. In these two regions the singularities of
the integrand in Eq. (9) are determined by the value of
A/k. For the case of A/k not equal to an integer,the
integrand has branch points at y =% andy = — k. There
are, therefore,two contours C, and C, with correspond-
ing solutlons (p(l) and (p(2) that can be chosen so that
there is no contr1but10n from the integrated term of
Eq.(4). These two contours are shown in Fig.1. For
p — ©,these solutions do not approach zero fast enough

Ak(

@ hemP) =

for | d3p ¢,,,(p) to be finite. In fact for large values of
P
A AT .
o8t = 2 o wn(), 0 e r=2
(10)
and for £ # 0
0, @)> 0(pcY), pow, i=12 (11)

A proof of these statements is given in the Appendix.

Since both (p,(aéz) and (p,(e%{) have prec1se1y the same be-

havior for large p, it is natural to try ‘F’koz) — ‘/’k(sz) asa
possible solution which may behave better for p —» @,
The integrand of Eq.(9) vanishes fast enoughasy — O0
so that for any fixed p the contour C, — C, may be
closed at infinity and the function ¢ {12 — (p,‘ag) evaluated
as 2n¢ times the sum of the res1dues at the poles at

y =+ {p which are enclosed by the contour. In order to
evaluate the residues we choose the phases of y — & and
y + k so that arg(y — k) = arg(y + k) = 0 just above the
right hand cut. With this choice, at the location of the

poles
y=2%ip. (12)

Thus for the contour C; — C,, we obtain

arg(y + k) =7 — arg(y — k),

y PLANE
FIG.1. Contours C, and C, for
the bound- state solutions given by
Eq.(9) for the case of A/k not equal
-K k to an integer. The x's indicate the
position of poles aty = * ip.
Co o
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(1) 2) _ d y kB + y\M¥
@400 = @32) = 2mi A, Yoo (dy[—(y PR <_—k—y>
y-ip

alo—we () )

where
(y + 5 = e7it e2iargy*R) gt gy == ip.
(y — k)
As p = o,arg(y + k)|,..;, > % 37. Combining this re-

sult with Eq (13), we obtam the result

o (2) Ao Yoo _€PTME

kOO 2 2

pow b (pE+AY) 14

Thus, unless A/k is an integer, (pzlé — ¢2) behaves as
p~3 for p — © and | d3po(p) is infinite, These solutions
therefore fail to satisfy the boundary conditions. This
argument can be extended to the higher angular momen-
tum states to show that for A/ not an integer the phase
of the residue at the pole y = #p will be different from
that at y = — #p and, therefore,there can be no cancella-
tion of the leading p behavior.

(1)

(pkOO (1_ e-i2'n)\/k)'

The only possibility remaining for a bound-state solution
isA/k =un, where n is an integer, Rather than continue
to evaluate o8y m — (p,f(,),, as the sum of residues at the
polesy =+ ip, it is easier to note that for r/k = n,the
1nte rand of Eq.(9) is analytic for Rey < 0 and, thus
qon[ reduces to zero. Moreover,if n < {,the integrand
is also analytic for Rey > 0 and, thus % (1,),‘ is also zero,
and there are no solutions. For n = € +1,0+2,.
the integrand has a pole of order n — ¢ = 1 2, at
y = k. The contour C; can be deformed into one enclos-
ing this pole. The bound state wavefunctions are given
as the residues at this pole:

() 2W1An[{ylm(p (dn_l_l
(n— € — 1)1 \dyn—c-1

y(k +y)y!

(1)
<p2+y2w+gzw (15)

n[m

where the constant A,, normalizes qo(l) (p) to unity and
k= (— 2mE)Y2 = )\/n. Using the spectral representa-
tion, this normalization constant is determined to be

— 7201 ((n— —1I2L + 2)(£L + 1)! 1/2(16)
(2m)3/2 nin + €)1(2k)2 1 >

3. SCATTERING SOLUTIONS

The spectral representation used to determine the bound
state solutions also determines the scattering solutions
if we let k2 - — k2, where k2 = 2mE and E> 0. As an
example we will discuss the ¢ = 0 partial wave solu-
tions in some detail.

nt =

We begin by considering the outgoing wave solutions by
assigning « a small positive imaginary part ie. Letting
k — i(k + i€) in Eq.(9), we obtain the solution
?ro0(P)

= 1€i_13(1) Ao Yoo ) fc

dyy (y + ik + ie))*/“‘
(p2 +32)2 \y — ilk + i€)) (1q)

where there are two possible choices for the contour C.
The integrand of Eq. (17) now has branch points at

y =— ik + € andy = ik — €. Thus for the contours C,
and C4 shown in Fig. 2(a) there are the correspondmg
solutions ¢ (3} and ¢{4). Each of these solutions be-
haves as p'2 for p = o, The proof is the same as for
the bound-state solutlons ol kOO and <pk0(), and is presented
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in the Appendix. The sum of these solutions is also a
solution which we denote by ¢ S(go- It can be evaluated as
the sum of the residues of the poles at y = + #p enclosed
by the contour C; + C,. In order to do this it is again
necessary to specify which Riemann sheet we are on,
We do this by choosing arg(y — ik) — 0 and arg(y + i) —
0 asy — « along the positive real axis for all scatter-
ing states. With this choice we have the following re-
sults at the poles:

y=ip arg(y —ik)=zm1 arg(y +ik)=37,

p> ' ) : L L3
y=—ip arg(y —ik)=—s3marg(y +ik)=31,
p<k y=%ip arg(y—ik)=—37arg(y + ik)=z7.
(18)

With the aid of Eqs (17) and (18) we can evaluate the out-
going solution ¢¢) %00"

<P:<oo( ) = AcoYoo A7 [(P + "> Mix
P P2 —k2\p—«
— /ik
— e2ﬂ>\/n(§_+_7’:> " ], p> K,
(19)
0¢)o(p) = Ao Yoo A7 em/x[(" +P>>‘/“‘
p(p2 — k2) —p

_ ik
() b oese
K+p

A
oSt 22Az0%e0 1 vy

Thus for p — «©,

(20)

and <p,<00 is not regular at the origin in coordinate space,

For the incoming wave solution, when k has a small
negative imaginary part — ¢¢, the analysis proceeds in
the same manner as for the outgoing wave, The cut
structure and the possible contours are shown in Fig.
2(b). We again consider the solu(tlon ‘Pxo)o = wko%
where the contour over which ¢, 4o is evaluated is
C; + C,. For this case the cuts have been displaced
relative to their positions for the outgoing solution, and
thus the values of the phases at the polesy = + ip en-
closed by this contour are changed from the preceding
results. From Fig. 2(b) we see that the phases are

(6)
Px00°

5. 1y =i argly - i) =—%m argly + ik) = 37,

K

b =—ip arg(y —ik) =— 37 arg(y + k) =— 37,

p<k y==2ip arg(y —ik) =— 371 arg(y + k) = 37.
(21)

The incoming partial wave ¢K00(p)

/ik
¢(’30 ) = )WAKOryOO 1 [6270\/:(<p + K>>\
K (pz _ KZ) P — K
. ik
- <p K) :|’ p> Ka
Ptk
]
@em®) = —22

(¢ + 1)!

where in evaluating the residues, the phases of Eqgs. (18)
and (21) are to be used for outgoing and incoming par-

di+l y(K2 +y2)l y + iK )\/iljg
Kl (ylm(p)<3d £+1 |:(y + ip)“2<y _ iK) ;
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Ca y PLANE
iK-€
“ikK+€  PiG.2. (a) Contours C, and C,
(a) for the outgoing partial wave
o scattering solutions given by Eq.
(17) when « has a positive infinite-
simal imaginary part i€, (b) Con-
tours C5 and Cg4 for the incoming
y PLANE Cs partial wave scattering solutions
when « has a negative infinitesimal
. imaginary part.
iK+€
-ik—€
(b)
Ce
A (22)
+ K
oholp) = o0 o[22
p(p?% —«2) —p

_ mMik
G5 e
K+ p

The asymptotic nature of this solution is given by

5 AMAx0 Yoo amx _ )
p3 ,

Although neither ¢ ,?) 0o Dor (Pxoo vanishes fast enough as
p = x for j d3 py to be finite, we see that it is possible
to obtam such a solution by cons1der1ng the sum 9080 +
(p KOO, provided that the normalization constants for both
are chosen to be the same, This solution is the regular
{ = 0 Coulomb partial-wave solution.

‘PKOO(P) p — ©, (23)

Once we have obtained the regular partial wave solutions,
the last point to be examined is the nature of the singu-
larity at p = k. Using the phase conventions already es-
tablished, we can evaluate the various solutions at this
point. For the outgoing wave solution, for example, we
obtain the result

AKO(HOOMT kein/2 Mik

/ i iK
B <[(P — k)2 +;2j1 2¢3 /2>A/ }’ ok, (20)
K

e8P =

We may also observe that Eq. (17) with the contours C,
and C, and the corresponding equation when « has a
negative infinitesimal part with contours C4 and C are,
in fact, the Fourier transforms of the so-called irregu-
lar Coulomb partial wave solutions in coordinate space.s

The arguments we have given can, in principle, be ex-
tended to cover all the partial wave solutions. The
general solution for arbitrary ¢ is given by

+ ; d:o+1 liy(,cz + yz)‘<y + iK> ik
dy 1 (y —ap)*2\y — ix }sy-—i)’ (25)

yEip

tial wave solutions, respectively, and their sum is the

regular standing wave solution,
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4. CONCLUSION

We can look at our spectral representation approach to
the solution of the Schrédinger equation from two points
of view. On the one hand, the specific results we have
obtained, because of their simplicity, may be useful in
the evaluation of matrix elements of various momentum-
space operators, or to study the general characteristics
such as analyticity properties or high momentum limits
of such matrix elements. On the other hand, the spec-
tral representation technique may in itself be of some
interest. Instead of having to solve an integral equation,
as in momentum space, or a second-order partial dif-
ferential equation as in coordinate space, we deal with
only a first-order differential equation in the single
spectral function variable. Thus, the solution becomes
trivial and symmetries present in the problem are used
from the start. Our treatment serves as another in-
stance of the simplifications achieved in the spectral
function approach first introduced by Wick and leads to
the conjecture that it may have a wider applicability to
other eigenvalue problems.

APPENDIX

We show here that the solutions given by Eq. (9) for C
equal to C4 or C, and A/k not equal to an integer do not
vanish fast enough as p — © for [ d3pg¢,,,.(p) to be
finite. First we consider the {= 0 state,

() dyy k+y\ M« ;
@00 = A ro Yoo fc. ( > » J=12.
i (p2 +92)2 \k —
(p2 +y2) y (A1)

Since
b+ Xk
f dy y ( y)
k—y

is not finite, ¢ k{,o(p) approaches zero more slowly than
p~4 for large p. After an integration by parts

TOWNSEND, FELDMAN, AND FULTON

@$00®) = Ao Yoo fc dy(p2 +y2)1
X (k2 — y2)-1 (k_+3i> )\/k_ (A2)

Asp—) [+4] k_y
@80 = XA Yoo I 9/ b2, (A3)
where
. AR
JG = fc dy 1 <k *y y (A4)
ik —y2 \k—y

provided J¢) = 0. The integral J¢) can be evaluated
by deforming the contours C,; and C, of Fig. 1 into ones
running along the Rey = 0 axis. The result is

JG) = ix1 gin(ar/k),
which is not zero unless A/k is an integer.

For the £ = 0 states, Eq.(9) becomes after { integra-
tions by parts,
) /. Ay
c;

Ak(<y(m 7 [)2 +y2)2

where f, (v) is finite everywhere along the contours C,
and C, and

f, ()~ O[(k_—_y)"/k]’ y — o, (A6)
k+y
Thus since Y,,(p)—> 0(p")

0 900> 0(pt9),
The above results are still valid if 2 — ¢ (x + i€) for the

scattering states. Thus %) | j = 3,4,5,6,also fail to
satisfy the boundary conditions. In particular,

'Hoo 'Axo sinh <ﬂ7)\> ‘, (A8)

which is nonzero for all values of A/k,

o) = f.(»),  (AB)

p— 0, { =0, (AT)

L oBot®) | 5=
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Erroneous bound state conditions from an algebraic misrepresentation of spin

wave theory
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A recently derived condition [C. J. Liu and Yutze Chow, J. Math. Phys. 12, 2144 (1971)] for the existence of bound
states in the Heisenberg ferromagnet is shown to be the erroneous result of an improper construction of the Hilbert

space for an algebraic representation of the spin operators.

Recently,! the Heisenberg model of ferromagnetism has
been reinvestigated in terms of a different algebraic
representation for the spin operators. The resulting new
condition for the existence of bound state contradicts a
previous expression obtained in an earlier calculation?
based on Green's function techniques. In this note it is
demonstrated that the new bound state condition is the
incorrect result of an improper construction of the
Hilbert Space for the algebraic representation.

Heisenberg's model of ferromagnetism is described by
the Hamiltonian

H=-7%J,,5:°S,,— B2.S%
i,m i

where S, is the spin operator for the atom at the /th site,
dJ,, is the exchange integral between atoms at the /th
and mth sites, and B is the externally applied magnetic
field. The spin operators satisfy the usual commutation
rules
[S5,S;,]=28,,5% [S%,8%] = *5,,.55

im
where

St= Sr+ 49y
and S3, Sfare the cartesian components of the spin
operator at site “i”.

It is well known3 that these spin operators can be realiz-
ed by an algebraic representation in terms of two sets

of commuting Bose operators. In the notation of Ref.1,
it is

St =Bb, S; =biB,

Sf = '12_[6731 - b;bl];

where the Bose operators satisfy the communtation
rules

[BZ’B:n] = 6zm’ [bz,b:n] = ézm:
[ﬁl’Bm]=09 [bl’bm]:oy
[ﬁl,b;‘n]=0, [bl’ﬁm]:()-

Although the algebraic representation reproduces all
the spin commutation rules, it does not preserve the
“kinematic constaint’4

(s;)23+1 = 0’

where S is the magnitude of the spin at the site “I”,

Of course, this constraint is entirely equivalent to the
“auxiliary condition” [Eq.(3.4) of Ref. 1]

B*B + b*b = 28.

Thus, in order to avoid the introduction of spuriocus
“kinematic interactions,”* the Hilbert Space in which
the operators act must be suitably limited. In other
dynamical applications of this representation,> it has
been shown by comparison with more usual techniques
that the correct dynamics is preserved if and only if
the Hilbert Space is restricted to vectors of the form

lpl...pN)

Y
= 3 C(pl...leql...qN)‘nl (GZi)S+Mi(bZi)s—Milo>'
qreeeqN =
In Ref. 1, Liu and Chow consider states of the form
28N
cisy({pHigh .1
Py =3 3 SR s

70 {g) (m1)112(xN112 Nw/2Nm/2
X(Z B;—N%ﬁ)n i b7 10),
m i=1 i

where g1 =2,% ,q,1,. These states are not clearly of the
form discussed above. They do not satisfy the constaints
imposed by employing a Bose representation for the
spin operators.

As a result, these states introduce kinematic interac-
tions. Any effective Hamiltonian derived in the space

of these states will have a spectrum riddled with spur-
ious eigenvalues. By extending the Hilbert space to in-
clude inadmissable vectors, all control over the dynamics
of the problem, as described in this representation, have
been lost.

The correct two deviate state for the discussion of
bound states is given by

— 2 - 2
12) = 2 /,83203252 11 072510)

+ Zp)#:[_“/ fmﬁiﬂzbizs’lbfs'lﬂp b:zs | 0>’
r#q

A straight forward solution of the eigenvalue problem
using these states® leads to the usual bound-state condi-
tions.2

Finally, the apparent reproduction by the authors of Ref,
one of the correct bound state condition for the one-
dimensional case cannot be taken seriously unless the
correct binding energy M can be deduced by their method.
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The methods of nonstandard analysis are demonstrated as a preliminary step for the construction of the
nonstandard A:¢; : model. Elementary quantum mechanical problems are solved and the renormalization

of the scalar field (Yukawa interaction) is investigated.

1. INTRODUCTION

In the applications of analysis,one often speaks of infi-
nitesimal increments and of infinitesimal volume ele-
ments. Since Weierstrass, the above phrases were un-
derstood to be shorthand formulations of more compli-
cated expressions involving limits. However, some time
ago one of the authors!.2 showed that expressions in-
volving infinitesimals can be taken literally if one refers
them to a suitable number system that contains infinite-
ly large and infinitely small elements. The subject that
arose out of this realization has come to be known as
nonstandard analysis (n.s.a.). It is described informally
in Sec. 2 below.

We feel that n.s.a.can be used advantageously in physics.

Thus, many calculations can be simplified by its use
through the avoidance of passages to the limit at cer-
tain stages. Also, using infinitely large numbers one can
give a rigorous meaning to self-energies and renorm-
alization. Finally, one may treat certain nonseparable
Hilbert spaces with the same ease as separable ones.

Using n.s.a.,we may retain results calculated by stan-
dard techniques whenever desirable, and, moreover, we
may reinterpret them in the nonstandard system. On

the other hand, the method is conservative;that is to say,
any final result that has been obtained by nonstandard
techniques but is itself formulated in standard terms
might have been obtained by standard methods, though
perhaps at the cost of a considerable effort.

Here we shall consider cases in which the basic as-
sumptions of a problem were formulated originally in
standard language and are then translated into the lan-
guage of n.s.a.and solved by its methods. Several ex-
amples of this technique are given in Secs. 3 and 4 be-
low. If we were to include an assumption that can be
formulated only in nonstandard terms, then the result
might not be amenable to a standard formulation and
would have to be interpreted directly. We intend to de-
velop this approach in a future paper.

2. NONSTANDARD ANALYSIS

Let R be the system of real numbers. An orvdered field
is an ordered number system which shares with R all
the usual properties involving the operations of addition,
subtraction, multiplication, and division. It has been
known for a long time that there exist ordered fields
which are extensions of R. Such fields are non-archi-
medean,i.e.,they contain positive numbers which are
greater than any natural number (in R), while their re-
ciprocals are smaller than any positive element of R.
However, generally speaking, one cannot extend most of
the familiar functions of analysis [e.g., e*, sinx, lnx,
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J, {x)] to these new systems so as to preserve their
usual properties. Nonstandard analysis is based on the
existence of parlicular ordered fields which include R
as a subfield and for which the extended functions in
question are, in fact, available and, moreover, are pro-
vided automatically by certain model theoretic proce-
dures. One of these is the so~-called uitrapower con-
struction3 which, for the case of a countable index set,
runs as follows. Let N be the set of natural numbers
and let F be a free ultrafilter4 on N. Then the field in
question, *R,is defined as the system of all sequences
of real numbers R¥, where two sequences are regarded
as equal if they coincide on a set of natural numbers
which belongs to F. Functions on *R are defined term-
wise on representative sequences selected from the
equivalence classes just defined, and a relation is said
to hold between sequences if it holds termwise for an
index which belongs to the ultrafilter. R can be em-
bedded in *R by identifying any real » € R with the
(equivalence class of the) sequence (r,»,7,* ") in *R.

While the ultrapower construction sketched above pro-
vides a relatively concrete realization of the type of
structure required for nonstandard analysis, the class
of these structures is quite large and contains fields
which cannot be obtained in this way. They can be
characterized in the following way.

A nonstandavd model of analysis is a proper extension
*R of the system of real numbers R, such that

Trvansfer Theovem: Any true assertion X about R is
still valid in *R,provided we reinterpret X in *R as
follows:

For every class of objects in R (e.g.,functions of one
numerical variable, relations between numbers, rela-
tions between functions, functionals,i.e., mappings from
functions to numbers), there exists a subclass, said to be
the class of the corresponding infernal objects. In par-
ticular, the class of internal entities of *R, contains an
element corresponding to each object in R. For example,
the class *$® of internal functions of one numerical vari-
able in *R contains, in particular, extensions of all func-
tions on R;but these functions do not exhaust *®. How-
ever,all individuals (numbers) of *R are regarded as
internal. Then the assertion X, supposed true in R, is
still valid in *R, provided we reinterpret each quantifier
in X (e.g.,“there exists a function,” “for all relations”)
as referring only to the corresponding infernal objects
in *R (“there exists an infernal function,” “for all in-
ternal relations”).

See Ref. 2. for a more rigorous formulation of these

notions. An object which is not internal is said to be
external. The following examples are instructive.
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(1) Let N be the set of natural numbers. Then N C R.
The corresponding internal subset *N of *R contains N.
The elements of *N-N are called the infinite natural
numbers. Any a € *N-N is greater than all elements of
N. If *R has been obtained by the ultrapower construc-
tion sketched above,then an example of an infinite na-
tural number is given by the sequence (0,1,2,3,--+).
The axiom of induction is satisfied in *N if setf (property)
is interpreted as internal set (property). Accordingly,
every nonempty internal subset of N possesses a small-
est element. The set *N-N does not have a smallest ele-
ment and, accordingly, is external.

(2) If a € *R is numerically smaller than any positive
r € *R,then a is said to be infinitely small or infinitesi-
mal. The set of infinitely small numbers in *R is said
to be the monad of zero. More generally,for any » € R
the set of all numbers a € *R which differ from 7 only
by an infinitesimal amount is said to be the monad of v,
p). If a € u(r),then we write » = %z and we call » the
standard part of a. All monads are external. The num-
bers of R (“standard numbers”) are isolated points in
the interval topology of *R.

(3) If @ and b are any numbers in *R,finite or infinite,
then the interval ¢ < x < a + b is internal. The interval
of all a € *R, a positive infinite,is external.

(4) The extensions® of x2 and e* to *R, *(x2) and *(e%),
are internal and even standard. (We may omit the star
on the extended functions,by convention.) The function

for x infinite

0
19 =11 for x inite
is external. Among the functions which are internal but
not standard are various representations of the Dirac
delta function, e.g., 5(x) = (mmx)"! sinnp2x,where 7 is an
infinite natural number

or

for—3nl=x=<in?
5(9()237’ 2N 2 -

0 otherwise

The first of these representations is analytic in *R;the
second is not. In either case we have®

° [, 800 (dx | = £(0)

for any f(x), which extends a bounded function which is
defined and continuous in the neighborhood of 0 in R.
The validity of this equation is, in fact,a condition
which has to be imposed on any reasonable interpreta-
tion of the delta function. On the other hand, j*a 52(x)dx

depends on our particular choice of the representations.

(5) Let f(x) be a real function in R, defined for an inter-
val a <x < b,and let x, be a point in that interval. f(x)
possesses an automatic extension to *R, as stated. It can
then be shown that f(x, + n) is infinitely close to f(x,),
in symbols f(xq + 1) = f(x,),for all infinitesimal n if
and only if f(x) is continuous at x in the classical
(Weierstrass) sense,i.e.,if and only if the following con-
dition is satisfied:

(C) For every positive € (in R),there exists a positive &
{in R) such that |f(xy + %) — flx,)}| < € provided & < 5.
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Now let f(x) be an infernal function in *R Then condition
(C) when interpreted in *R according to the rule adopted
earlier, refers to positive € and 6 in *R. If f(x) satis-
fies the condition in this form,then we say that f(x) is

@ continuous (at x,). On the other hand, if f(x) satisfies
(C) with € and 6 still assumed in R,then we say that
f(x) is S continuous. It turns out that the condition that
flxq +n) = f(x,) for infinitesimal 7 is equivalent to S
continuity. Thus,if f(x) is standard then all these defi-
nitions coincide. For example,the two 6 functions de-
fined above are both @ continuous at the origin,but not

S continuous. By contrast,the function

0, x=0

flx) =
n, x> 0

where 7 is infinitesimal,is S continuous at the origin,

but not @ continuous.

In the sequel to this paper (Ref. 7) we shall require the
notion of an enlargement which generalizes the kind of
nonstandard model discussed here (see Ref.2). How-
ever,the above indications should be sufficient for the
study of the present paper.

3. EXAMPLES FROM QUANTUM MECHANICS

In this section we demonstrate the use of n.s.a.by find-
ing the bound state solution of the one-dimensional
Schrédinger equation

d2
(d_;z_ +E — V(x)> ¢(x) = 0, (1)

for the square well, infinite square well, 5-function, and
singular square well potentials. The infinite square well
and the §-function potentials are limiting cases of “phy-~
sical” potentials,but themselves are outside the frame-
work of quantum mechanics. This only means that we
have to prescribe conditions other than the continuity of
the logarithmic derivative of the wavefunction or to
treat these problems by taking limits.

In the n.s.translation we have

(fi + E — V(x)) o(x) =0

x2
where
"VO, x <0
Vix) =<v,, 0<x<L, (2)
Voo L<x

and the conditions (i) V4 > E > V4, (ii) ¢(x) is infinitesi-
mal for x € *R-R, where R, is the set of all finite reals;
and (iii) the logarithmic derivative of ¢ (x) is @ conti-
nuous.

In our formulation all four potentials are “physical, ”
since all four are “finite” square well potentials in the
nonstandard universe. They differ only in the values of
V4 Vys,and L. For a finite square well potential the
solution of (1) is well known. Since (2) contains only
internal objects, by the transfer theorem its solution is
given by

J. Math. Phys., Vol. 13, No. 12, December 1972



1872

x <0
P, +ik

Pr ~ % exp(—ip,x),
\ 2,

0<x<L,

exp(k, x),
&’-ép—z—i exp(ip,x) +
¢, ¢, (%)=

B2 + p2
—-;al‘- sinp, exp(k,L — k x), L < x

nsn

where ¢, is determined by normalization, p, and &,
satisfy the equations 2k p (k2 + p2)* =tanp, L,and
E, =p2 +V, =V, — kZ. Observe that for n'c N:

{(a) For the finite square well V,, V; and L € R, thus
k, € R and Oexp(k,x)] = exp(k, 0x), 0¢, (x) is the well-
known solution of (1).

(B) For the infinite square well V; = 0,V, = + 7 (9
positive infinite),and L € R. Thus p, = (E,)1/2 is
finite, and O[2k,p, (k2 + p2)"1] = O[2(E,)1/2"(n + E,)1/2
1] =0 = %anp, L,i.e.,%, L =n7or O, =naL1l,
Again, 0¢_(x) is the known solution of (1).

{y) For Vy =0, V;, =—~AL1, 0<AcR,and0 < L in-
finitesimal,i.e.,the 6-function potential of strength —A,
we have 2(—E,)Y/2(AL1 + E )1/24-1 = tan[LAL" +
E,)1/2]. Thus, %(—E,)1/2 = ¥{1/2AL-1(AL"! + E, )-3/2
tan[L(AL"1 + E )1/2]} or O(~ E,)V/2 = 1/24 again lead-
ing to the known sclution of (1).

The transfer theorem ensures that all representations
of the § function lead to the same %(x),i.e.,to the uni~
que solution of (1).

(6) For Vy =0,V, =—AL2, 0 <A€R,and 0 <L in~
finitesimal,i.e.,the singular square well, we have

2(—E,)Y/2(AL? + E,)1/2A-112 = tan[(4 + L2E,)'/2].
(3)

Since E, < 0and A + L2E, > 0,there are only a finite
number of bound state solutions. They have infinite
energies, since if E, were finite in (3) the right-hand
side would not be infinitesimal while the left-hand side
would be. Evaluating ¢, from normalization we find
that ¢, = b, L 1/2,where b, is finite. Therefore, ¢,(x)
is infinite in the monad of zero and one cannot take the
standard part of ¢(0).

A more interesting case occurs when the potential in (1)
is given by
0, x<a,a>0

_J
Valr) —l-Ax“2, x>a,A >i—~ ’

As a - 0, V, (x) becomes a singular potential.
In the nonstandard formulation we have

d
(d——xz + E - Va(x)> ¢(x) =0,
where
Va:fco, x<a,a>0 (4)
|—4x2, x>a, A>3,

and the conditions: (i) E < 0; (ii) ¢{x) is infinitesimal for
x € *R-R,; (iii) ¢(x) is @ continuous at x = a.

Note that V ,(x) is not an n.s, physical potential.
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Let E =— k2 <0, z = kx,and ¢(x) = ¥(z). Then by the
transfer theorem the two linearly independent solutions
of (4) are

v (@) 50, z < ak
2} = N
1 11(%_‘4)1/2(2) z > ak
0 z < ak
¥ (2)=f ’ .
2 } K e (e), z < ak

Because of condition (ii) only ¥ ,{(z) is acceptable. De-
note the zeros of K(%_A)yz (2) by 29,2, ++.,2,, By the

transfer theorem  is finite, Condition (iii) requires
that k; = z;,a’1,ie., E; =—22a 2 fori = 0,1,...,m.
Thus, we have a finite set of discrete eigenvalues. When
a is infinitesimaljthe E; are infinite as expected on
physical grounds.

Next we determine the normalization constants. Using
the transfer theorem we find that®

0, x<a
b%/2a_lxifzK(%..A)J/z(a_lzix)

(iﬁi(x:a) = {

s
Xz a

where
bit =2Re[K (4, )¥2~1(Zi)K(§~A)y2*1(zi}}'

For standard @ # 0, 9¢{x,a) is the well-known solution
of (1). For infinitesimal a, ¢ ,(x,q) is infinite for some
points in the monad of zero, and infinitesimal for x posi~
tive and not infinitesimal. We also see that ¢ ,(x,a,)
I (x,a,)) = 0 when a, is finite and a, is infinitesimal.
That is ¢,(x,a) — 0 in the weak topology as a -+ 0,0r

¢ (x,a) rotates out of H C *H into *4-H. The renor-
malized operator 6 = a2[(d?/dx2) + (4/x2)] also rotates
in such a manner that {¢ (x, a)| 64 (x,a)) remains finite
and independent of a.

4. THE SCALAR FIELD

In this section we give the n.s.version of the scalar
field interacting with a (nonrecoiling) nucleon.? The
form factor f(k?2) is taken to be the characteristic
function

1 fork2=<n?
x,(k?) = { 7
10

where 7 is some infinite integar.

otherwise

The equivalent potential, under these conditions, differs
infinitesimally from the Yukawa potential. We renor-
malize the resulting theory.

Following Ref, 9, we introduce the definitions:

(i) Let & =F =2;, sy F, be the n.s. Fock space. F
will have *N mutually orthogonal axis, and the vectors
in F have infinite, finite, or infinitesimal norms.

(ii) The Hamiltonian H(») = H, + H/n), where

Hy=mg [dp w*(p)¥(p)dp + [dkok)a*k)a(k),
H/n) = M27)32 [dp [dk
x %, (k2)(20&) 1/2y*p + ¥ p)alk) + a*(—k)],

where ¥(p), ¥*(p) and a(k}, a*(k) are the destruction and
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creation operators for the nucleons and mesons, respec-
tively, w(k) = (k2 + p2)1/2,; is the mass of the meson,
and m ; is the bare mass of the nucleon, and X is a coup-
ling constant.

(iii) The following commutation rules are satisfied:

[W(p), ¥(p")]. = [¥*(p), ¥*(@)]. =0,

(a(k),a(k’)] = [a*(k),a*k’)] = 0,
[¥(p), alk)] = [¥(p), a*(k)] =
[b*(p), alk)] = [¥*(p),a*(k)] =

[¥(p), ¥*(p)], = 63(p — p’) and [a(k),a*(k’)] =063k — k'),

where

?

{0 x%0
6(x) =) .

| undefined for x = 0
and

[o(x)g(x)dx = g(0)

(iv) The vector |n,0) satisfying y(p)in, 0) = alk)|n,0) = 0
vp and k is the physical vacuum.

Vg € *L,.

(v) The physical nucleon state |7,1,p) is defined by the
equation H(n)|n,1,p) =m@)In,1,p) and [ [n,1,p 1l =1,
where m(n) is the physical mass.

With the aid of the transfer theorem using the results of
pp- 341-44 of Ref. 9, we get

i) H(mIn,0 =0;
(ii) H(ma*&k)|n,0) = w(k)|n,0);
(iii) ¥(p)*| n, 0) is not an eigenstate of H(7n);
(V) 1n,1,p) = D cny Jdadk,- - - dk,
x cp(ﬂ)(n,q;kl,...,kn)(l/n!)a*(kl)--

where

a*(k,)|n,0,

(=)

n!

C(;)(T[, q;kp s ’kn) = z1/253 <q + iZ=:1ki _p>

%, (k%)
1[2(2m3w3(k,)]1/2’

n
x 1

where

o =)
z=——exp (Inp —In[n + (92 + u2)V/2] + ——L—0t
ppe Xp M [n+(n ©2)1/2] m

{i.e., infinitesimal for finite A and behaves as n=2747* if
m(n) = my — (\2/4n2)[n — p tan(n/W)]; O[tan(n/w)] = 4.

For finite cutoff d the one-particle state Id, 1,p) is in
F C *F. As d becomes infinite the one-particle

state rotates to *F — F. As |k;| increases the factor
[2(27)3w3(k,)]'1/2 behaves as Ik [-3/2, The volume
grows as Ik | 2. Therefore,one is more likely to find
mesons with large momentum than with small momen-
tum. Hence as d increases the n meson state rotates
out of F, C *F, into *F, — F,. To |d,1,p) the contri-
bution ratio from the » + 1 and n meson states is pro-
portional to [Ad/(n + 1)1/2], Thus when d =13 (infmite),

the main part of (5,1, p) will come from Uger, *Fie fOT
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some infinite integer K and I, ={1,2, ..., k} for some

finite %.
In accord with pp. 347-48 of Ref. 9 we define

S, = in2m)7 32 [dp [dkyx,(k2)[203(K)] /2
X Y(p +k)[e*(k) — ay¥*(p)]
and
iS

YAp) = e“ny*(ple * and a}(k) = e *na*(k)e 0.

Then H,(n) = H, + H, (), where
Hy, =mg [dpy, 0,0 + [dkeka}(K)a,(k),

H, (1) =2%(21)3 [dq [dp
x x &2 2020) 130 + KW QY, B, (q + k),

i.e., with this rotation of the n.s. Fock space the Hamil-
tonian no longer contains a self-interaction term, but
contains interaction between “dressed” nucleons (nuc-
leons with mesons clouds that contain most probably an
infinite number of mesons with infinite momentum).

The equivalent static potential is
Vix — x') = A2(27)3 fdk f2w2(k)]"1 exp[ik * (x — X')]

_AZexplplx—x ]} A2
T 8 x— x| 872)x — x'|

L" n? exp[i26 + in(cosh + i sind)]
12 exp(i26) + p2 )

The second term is infinitesimal for infinite n and

0|x — x'| 0, For ¢ in the monads of 0 and = the inte-
grand is finite and, otherwise, the integrand is infinitesi-
mal. Hence,if 0|x — x| = 0, OV(x — x') is the Yukawa
potential. Moreover,the second term is infinitesimal
compared to the first term even when °|x —x'| = 0.

5. CONCLUSION

We demonstrated the techniques of n.s.a.by working
simple examples. In Sec. 3 we translated well-known
one-dimensional bound state problems into n.s.lan-
guage. We showed that potentials that are commonly
called “idealized” or “limiting,” are “physical” in the
n.s.formulation. We showed how one recovers the
standard results.

In Sec.4 we showed the use of n.s.a.in investigating the
properties of the wavefunction as a given parameter
tends to some limit. We saw how the wavefunction
“rotated” out of ordinary Hilbert space.

In Sec.5 we found a field theory in which the equivalent
potential differs infinitesimally from the Yukawa poten-
tial. We saw how the vacuum vector “rotated” out of
Fock space into the n.s. Fock space as the form factor
became one on an infinite set. One may renormalize
the infinite cutoff Yukawa theory,by defining the mass
renormalized Hamiltonian H ., on a separable Hilbert
space ..., ,extracted from *F. This construction is
carried out for the A: ¢ 4: model in the sequel to this
paper.”?
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As a second step in the construction of the nonstandard \:¢3: model we analyze Glimm and Jaffe’s work from the non-

standard point of view.

1. INTRODUCTION

In this paper we analyze the X:¢$(x): model of quantum
field theory using the tools of nonstandard analysis,
n.s.a. The model was selected because it shows both
the conceptual and the technical difficulties that one en-
counters in building a nontrivial model of quantum field
theory. These problems will become more transparent
through explicit constructions within the framework of
n.s.a.

The A : ¢4(x): model was investigated by Glimm and
Jaffel in three papers to which we will refer as I, IT, and
II. For comparison between the nonstandard and stan-
dard treatment of this model, we will restrict ourself

to the subject matter covered and to the assumptions made
in these papers. This permits us to concentrate on those
aspects of this model where the nonstandard approach is
advantageous,

In I and I it is found that with a space cutoff g{x) imposed
the theory is meaningful. There exists a self-adjoint
operator on a Fock space, the Hamiltonian, that generates
the time translations, provided the time interval is suffi-
ciently short. The Hamiltonian possesses an isolated
lowest eigenvalue, E, of multiplicity one. The corres-
ponding eigenvector Q , the vacuum vector is an element
of Fock space. However, as the support of g(x) grows,
the vacuum vector seems to move out of the Fock space,
E PRadad and the Hamiltonian ceases to be an operator.

In consequence, one is forced to change Hilbert spaces and
to redefine the operators of the model. This renormali-
zation is carried out in IIT using the GNS construction.

In the n.s. treatment both for finite and for infinite cut-
offs the Hamiltonian is an n.s. self-adjoint operator on
an n.s. Fock space with a unique vacuum vector. For
finite cutoff the vacuum vector is an element of the stan-
dard Fock space which is imbedded in the n.s. Fock
space. To renormalize the theory we map a certain sub-
space of the n.s. Fock space onto a standard Hilbert
space and redefine the operators.

To carry out this program, we begin by describing n.s.

objects such as *L,(*R), n.s. operators, etc. (Sec. 2). In

Sec. 3 we outline the A : ¢3(x): model. In Sec. 4 we build
the n.s. model, and in Sec. 5 we renormalize it. In Sec.6
we summarize our results and sketch lines of develop-

ment that we intend to follow up in the future.

2. NONSTANDARD PRELIMINARIES

The method of n.s. extension that we are using in this
paper is provided by model theory.2 We considerR (reals),
C(complex numbers), arithmetic, analysis, L,(R"), D and
D’ (the spaces of test functions and distributions), F
(Fock space), operators, and linear functionals on F as
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given within the framework of some structure M. A model
of some nontrivial enlargement *M of M serves as our
n.s. extension.?

For what follows, it is unnecessary to construct an ex-
plicit model for some specific enlargement *M of M,

However, it is convenient to picture the n.s.objects. The
model we select is such that *R, *C, *S, *F may be visual-
ized through an ultrafilter construction.? This means

that a vector of *F can be pictured as an infinite sequence
of vectors of F (reduced with respect to a certain equiva-
lence relation.)

For convenience we restate the main theorem of n.s.a.

Transfer theorem: All true assertions about analysis
remain true in the nonstandard model provided we re-
interpret them as referring to internal objects only.

See Ref. 2 for the notion of internal and external objects
and Ref. 4 for an informal discussion of these concepts.
We recall that any set, function, operator, operator alge-
bra, etc. is either internal or external but not both.
Among the internal objects arethe nonstandard extensions
of all standard objects. Thus, every function, set, opera-
tor, etc., in standard analysis possesses a canonical
extension to the nonstandard model. The ultrapower
method provides a relatively concrete construction of
internal objects.

3. THE X : ¢3 : MODEL

The model developed in I and II is a spin-zero boron
field ¢, with a nonlinear, X : ¢ 4:, self-interaction with a
space cutoff in two dimensional space—time. The field
¢(x,t) is a bilinear-form-valued solution of

'—ai— 8—2 2 = — 3
<8t2 dx2 ’ m°> ol 0) Dg(x)p3(x, 1),

1)
where g(x) is a smooth positive function that equals one
on some bounded interval and vanishes outside some
larger bounded interval containing the smaller one, In
IO the interval on which g(x) = 1 is increased indefinite-
ly in some prescribed manner, i.e., through a divergent
sequence of intervals. An infinite sequence of standard
intervals is replaced by a unique n.s. interval. Hence,
“removing the cutoff’ is equivalent to selecting a cutoff
in the n.s. model.

The Hamiltonian corresponding to (1) is given by H(g)
=Hy+ Aj;z : ¢4(x): g(x)dx, where H is the free particle
Hamiltonian. The corresponding vacuum vector is £, .
In I and II it is shown that for all finite cutoffs, £, be-
longs to F. Hence, £, € *F even when suppg = (— 7, w)
where 1 and w are infinite positive numbers. It is be-
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lieved that as the length of the cutoff increases, (), con-
verges weakly to zero.5 From the transfer theorem it
would then follow that as the length of the n.s. cutoff in-
creases, §J, would converge weakly to zero in *F, i.e.,
there is no unique n.s. vacuum,

On the other hand in II it was shown that if x '€ suppg,(x)
and suppg,(x) is large enough, then ¢g (xg,tg) = ¢@z (*0s L)
when suppg,(x) C suppgy(x). Thus for finite (x, {y),

¢, (%95 £g) = ¢(xg, o) provided that (— n,7n) C suppg(x) for
some infinite positive 5. Note that ¢(x,¢) is an internal
operator for each finite (x, f), but the collection of ¢(x, ?)
for all finite (x, ) is an external set.

After the above intuitive remarks we could proceed by
translating into n.s.language all the theorems and lemmas
of I, II, and III. In some cases the standard proofs plus
the Transfer theorem would provide the n.s.proofs. In
others, especially where limits are taken to remove the
momentum cutoffs, the n.s.proofs would be shorter.é
But a different approach is more useful here. We apply
the Transfer theorem only to the results of I and I

in building an unrenormalized n.s. theory. (This exem-
plifies the fact that in building an n.s. theory one may
incorporate as many of the standard results as desired.)
We then extract from *F a standard Hilbert space Xoon
which is identical with F__ .. Inthe sequel to this paper
we will add external assumptions to the unrenormalized
theory and find new interpretations.

4. THE n.s. MODEL

In this section we compile those n.s. definitions and
theorems which define the n.s. model. The numbers in
brackets after our numbering refer to the page on which
the standard counterparts are found.

Definition ! [I[-364]: The Fock space *F is the
Hilbert space completion of the symmetric tensor alge~
bra over L = *L,(*R),

*F = G(L) = EBnE"‘N*Fn’

where *F, = Lo L® @ .L (n factors) is the space ofn

nomnteractmg partxcles For verF, y= {wo,wl }
we have ||¢“2 ZnE*N “Wn“z

Definition 2 [11-364]: The no particle space *Fo =*C
(the complex numbers and €; =1{1,0,0, - -} < *F is the
bare vacuum or bare no-particle state vector

Definition 3 [1I-366]: The Hamiltonian H(g) acts on
*F and can be written as H(g) = H + Mgt ¢4(x) : glx)dx
=H, + H,; ,, where H is the free particle Hamiltonian;
H,,is the mteractlon cutoff Hamiltonian; and g(x) is an
mternal smooth positive function that equals one on an
internal set B that contains in the interval (—n,1),n €
*N, and vanishes off an internal set that contains B.

Definition 4 [I-1946]: The domain D, =

Theovem 1 [I-1949): (a) H(g) is self—adjomt with do-
main D(H(g)) = D(H, N D(H, )
(b) H(g) is essennally self-

adjoint on D,

Definition 5 [II-364]: E,is the lowest eigenvalue of the
equation

H@®R, = B9, I9,l=1.
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Theorem 2 [II-368]: There exists a vacuum vector
Q, for H(g).

Theorem 3 [lI-372]: The lower bound of H(g) is a
simple eigenvalue. (Note that we got the above result
with the transfer theorem. Therefore, the gap between
E P and the rest of the spectrum may be infinitesimal
but not zero.

Definition 6 [II-382]: Let fx,t) be the extension of a
C function that vanishes off the rectangle —n < x,t < n
for some ne NC *N. Then A (f) = j*chg(x,t)f(x, tydx
and ¢g( f) is the closure of the operator defined by

W, 6, W) = [ W, A (FW)dt, ¥ € D(H(g) + 6)1/2],
where b is a suitably large constant.

Theorem 4 [I1-388]: A, (f) and ¢,(f) are self-adjoint
operators.

Theorem 5 [II-388]: ¢,(f) =
C suppg for some 7€ *N — N.

¢(f) provided (— n,7)

Theovem 6 [[I-385]:

d
10 = 6(~ 57) = @), 0.

Remark: ¢(f) is an internal operator when f(x,{) is
the extension of a C function with support in the rec-
tangle — n < x,¢ < n for some n € N; but the collection
of all such operators is an external set. The importance
of this fact cannot be over emphasized, Since ¢(f) is
internal its properties are determined by the standard
operator that extends to ¢(f). But there is no standard
theorem that determines the properties of this external
set of operators. This is why a renormalized nontrivial
theory may exist,

5. THE RENORMALIZED MODEL

We reproduce the renormalized model of III. From *F
we extract a standard Hilbert space J..,. Our method
is equivalent to the Gel'fand—Naimark~Segal GNS con-
struction. We redefine the operator of *F on 3¢ .
Our construction illuminates the one employed in III.

To make the connection between the GNS construction
and our extraction of €., more transparent first we
discuss a case in which the linear functional used in
the GNS construction is simpler than the one used in
OI. Let &, be the vacuum vector for the cutoff g(x), let
Co= {f(x)lf(x) *h(x), h (x) € Ce and has compact
support}. Define S = {z € *Flz = ¢i¢(/) ...ei0(f)q ,
f;€ Cwj=1,2,...,kc N},and let X be the subspace
of *F spanned by S Note that each element of C~and
of JCis internal, but that both € © and 3¢ are external ob-
jects, We extract 3, from I by discarding all vectors
which have infinite norms. To get 3., from 3, we
collapse into a single vector those vectors which differ
from each other by a vector of infinitesimal norm; and
redefine the innerproduct by passing from (z,2,) to
024, 2,). Equivalently, map 3, into ¥, a subspace
of some standard Hilbert space by the rule that if
21,85 € Hgandz, 2 by,2, by, then 0(z,25)4p =
(81,05) Xren®

The elements of the C*-algebra G, generated by
{ei¢()|.fe C},are operators on *F. From the Riesz
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representation theorem we infer that the linear func-
tionals on *F are innerproducts. In particular, the posi-
tive linear functional ¢(A) of the GNS construction in
this concrete case is 0(Q,, AQ ). Constructing the quo-
tient space with the left 1deal% I={re @lplr*r) =0}
amounts to our “collapsing” of the vectors

The linear functional of the GNS construction employed
in IIT is more complicated, because it uses an averaging
process. As we will see the averaging serves two pur-
poses. It ensures, first, that the energy per unit volume
is finite space translation invariant.

To give the n.s. version of Sec. 2 of III we also take the
cutoff function glx) € Cw to be nonnegative and equal to
1 on [~ 3, 3], and define g, (x) = glx/n), nc *N. The
correspondmg vacuum vector is denoted by ,. As in
III we fix an k(x) € C= with support in[ — 1, | that has
the property [h{x)dx = 1. We use the notation £, jla) =
ei?va's;) where f) = [,z + o , 1)f;{x)dx and 1p stands
for either ¢ or 7. We define Sla, #) {z(a) e *Flzla) =
Eql@) - -Eya)Q,, f,€ T, j=1,2,:++, ke N} and
JCO(a n) C *F the subspace that contams only finite
normed vectors and spanned by S{a, n). To get &
we average the Xy{a, n} — s. The vectors in X, f%
satisfy the condltxons that if z,(0) and £.(0) map “into
b, and &b,, respectively, then

(B1505) 50, on (o = OL(1/2) [Hla/m)z, (@), 2,(0)) 45 da].

For the proper choice of #, say 1, ¥, ., (n) is identical

to F ., of IIl. The only difference between the construc-

tion of the two spaces is that in III @ is an abstract alge-

bra while in the n.s, model it is an operator algebra.

This is the case, because the space 3,(0, n) on which

@ is defined and leaves invariant is nonstandard. The

innerproduct of the GNS construction in III is defined

by the mapping of 3,(0,7) onto &, (n), since for any

standard bounded operator 4, w,(4) = 9(Q,, *AQ ) x5,

and since a convergent subset of w, means selecting

the correspondmg £2,. Note that g 1s infinite, i.e.,

ne *N— N, Therefore &n (x) is equal to 1 on an infinite

interval that contains [ — 37, 3n]. But, by definition, the

support of g, (x) is contained in {— &, k] for some

Ke *N. Hence we have an infinite cutoff n.s. model,

which means that the renormalized standard model wﬁh—

out cutoff may not be unique. From the construction of
X Len(n) we see the effects of the averaging by k(a).

The mappmg of 3,(0, n) onto &_ (1) leaves the norms

invariant. E; F(@)E (@) = I, so that

“b]” Fren (n) = 0([1/7))fh(a/77)(51(&)' * .Ek{a)nn’

Ei(a) - B la)R) wpda] = O(1/n) fula/n)(@,, R, ) pda]
= 0[(Q,,9,)sp (1/nhla/n)da] = & 9, )y

= (E1(0):-E,0Q,,E(0): - - E0)Q,) s

But the map changes the angles between some of the

vectors. They become larger, i.e., their innerproduct
smaller.

It is easier to demonstrate some of the properties of

Fren On X o, (n). For examples,
(i) H,., is defined through the action of H( &, ) on

I
3¢ o(0, 3 Thus, the spectrum of H . is nonnegatlve
because the spectrum of H (g ) is nonnegative,
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{(ii) Finite time translation invariance follows from
the finite propagation speed and from

iTH{g ) -
e n Qn = Qq.

(iii) To see that the model is finite translation invariant
it is sufficient to obgerve that

0 = O[(1/n) [hla/mQy, E (@) - Ef@)2, ) pda]
for all finite intervals Jf; which is evident, since 7 is in-
finite and |(Q,,E () - -E (@) )y = 1 so that

[(1/n) fhta/mAQ,, Ey (@) - -E @) s pda | = (1/7)

x length (/) = infinitesimal,

But there is yet another way to see this.

(1/n) fagh(a/n)@,, E1 (@) - E (@), ), pda
= (1/) [aghla/mUQ, (o, E1(0): " E(0)Q, )spda),

where ,,4 is the vacuum vector of the g[{x — a)/7]
cutoff, The last formula is interpreted the following
way. For each @ € [— 7, 7] we construct a renormalized
Hilbert space corresponding o the vacuum Q, o by the
procedure given in the beginning of this sectlon, and
then we average over the renormalized Hilbert spaces,
Clearly adding or deleting Hilbert space corresponding
to a finite interval cannot affect the average.

6. CONCLUSIONS

In Sec. 4 we constructed an n.s.X: ¢4: model with an
infinite cutoff. In Sec. 5 we recovered the renormalized
Fock space.

Nonstandard analysis allowed us to work with operators
on a Hilbert space, instead of an abstract operator alge~
bra, and to employ intuitive ideas which are not avail-
able in the standard approach, It illuminated several in-
teresting features of the renormalization, In III 3 re-
normalization by averaging is employed in addition to
the energy renormalization by the subtraction of an
infinite constant, This averaging “opens” the Hilbert
space, i.e,, it diminishes the inner product of two vectors.
Vectors that are close together inX_..(n) came from
vectors that were even closer in *F, and, hence, the
finite space translation follows. ThlS “openmg” also
decreases the energy density. On the other hand, this
averaging procedure does not decrease the cardinality
of the set of the basis vectors of 3. (7). If the re-
normalized model constructed without averaging is only
locally Fock, then the renormalized model constructed
with averaging can be locally Fock only.

As it was pointed out, ¥, ., constructed without an
averaging is already an external subspace of *F. Hence,
no standard theorem about F is transferable to F
directly by the use of the Transfer theorem, In par-
ticular, there is some hope that no analog of the Haag
theorem will apply to ¥ .. This statement demonstrates
that it may be advantageous to investigate standard
models with n.s. methods, bringing into play the distinc-
tion between external and internal objects.

Other approaches to the problem of finding a renormalized
X1 ¢%: model suggest themselves: (i) Retaining an in-
finite momentum cutoff may remove some of the diffi-
culties. (ii) Using periodic boundary conditions, of
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infinite period, both in momentum and in position space
would allow one to use n.s. Fourier series. (iii) Quan-
tizing position space in an infinite box with rigid wall
has its obvious advantages.

Field theory is probably best formulated on a non-
separable Hilbert space. The logical candidate is *F.
Having an established n.s. model (Sec. 4) one should check
whether or not it satisfies a modified n.s. version of
the Wightman axioms. We found in this paper that
modification by external assumption is necessary. One
can only require invariance for finite translations.

Thus in the n,s.version of the Wightman axioms one
should use the phrase “finite Lorentz transformation,”
What modifications, if any, are needed to assure that we
do not need to average by kl(x) is not clear, Hopefully,
one of the three approaches mentioned in the preceding
paragraph will provide the answer.
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Some properties of the intertwining operations, which carry over certain infinite-dimensional, reducible (but not
completely reducible) representations of the restricted Lorentz group into finite-dimensional (irreducible) representations

are studied.

1. INTRODUCTION

In the study of asymptotically flat solutions of the Ein-
steinl or Einstein—-Maxwell2 equations, one naturally
considers functions of three variables defined on null
infinity, If null infinity has an S2 X R1 topology (as is
usually assumed) these functions can be viewed as time-
dependent functions on the unit sphere.3 Due to the fact
that part of the asymptotic symmetry group? is the
homogeneous Lorentz group L,these functions possess
relatively simple transformation properties. In fact
many of them transform as vectors in the representa-
tion space of a reducible (but not completely reducible)
infinite-dimensional representation of the group L.
From the theory of these representations, it is known
that these spaces possess invariant subspaces and that
frequently (depending on the type of representation)
finite-dimensional representations can be constructed
from the factor spaces.

Although it is common (in the study of asymptotically
flat spaces) to assign to some of these tensors (asso-
ciated with the finite-dimensional representations), a
definite physical meaning such as energy—momentum,
center-of-mass-angular momentum, 4-velocity, etc., it
is not our purpose here to study the physical questions
raised by such identifications. We will be concerned
only with certain mathematical results having to do
with the reduction of the infinite-dimensional represen-
tations to the finite-dimensional ones, These results,
which deal with the reduction of products of infinite
with finite-dimensional representations, though of in-
terest in themselves, are to us of fundamental impor-
tance in analyzing asymptotically flat spaces. In the
paper following this one we apply these ideas to the
problem of equations of motion in general relativity.

It has been established through the use of the isomor-
phism between the conformal group of the sphere and
the homogeneous (restricted) Lorentz group that the
functions in question are the spin and conformally
weighted functions on the sphere. Although the basic
ideas come from the beautiful work of Gel'fand et al.,®
we use the notation and techniques of Held, Newman,
and Posadas (HNP),® which are reviewed in Sec. 2.

In Sec. 3 we establish a link between tensors in Min-
kowski space and functions on the sphere with finite
expansions in spin s spherical harmonics.? Section 4
contains the main results concerning the reduction of
products of finite with infinite-dimensional represen-
tations.

2. THE LORENTZ GROUP AND THE SPHERE
By introducing the complex stereographic coordinate

t = eiv cotd, (2.1)
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the standard line element of the unit sphere
ds2 = df2 + sin260d¢2
can be rewritten in the form

ds? = 48T (2.2)
Pj

where Py = 3 (1 + ce),
Under the fractional linear transformation
¢ = (af + b)/(c{ +d), ad—bc=1,

the metric of the unit sphere transforms conformally,
ie.,
ag'dg’ _ ., dtag
Py »3

(2.3)

(2.4)

with conformal factor K given by
K=J12p,/P§

= (1 + EO)[las + b)(@f + b) + (ct + d)(ct + )L, (2.5)
where

g% A
¢ dg
From (2.3) we can also define the function A(£, %) by
o = (L2 _ o vd
de’ /dg ct +d
where X is interpreted geometrically as the local angle

of rotation of the two coordinate grids,{ = const and
¢’ = const (after rotation).

(2.6)

Infinitely differentiable functions on the sphere,n(s,w)(C,E),
which are expandable in spin s spherical harmonics

n(s,u)(C;E) = 12’! A1 m sYlm(CvE)’

and which transform under (2. 3) as

T, (6,8 = Mgy (€7, 87) = Kweisrin 1 (0, 0)  (2.7)

are said to have spin weight s and conformal weight w.

Because (2. 3) is isomorphic to the restricted Lorentz
group, it is possible to show that such functions, which
transform under (2. 3) with s an integer or half-integer
and w any complex number, form the vector space of a
representation of the restricted Lorentz group that can
be labeled by (s,w). These representations are not
necessarily irreducible, although a converse, namely
that all irreducible representations are realizable on
these spaces, is true.
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For our purposes it will only be necessary to consider
the representation labeled by (s,w) and (s’ = — s, w’' =
—w — 2) =(— s,—w — 2), such that

s and w are both either integer or half-integers8 (2.8)
andw = |s]. .
The vector spaces associated with these representations
denoted by D, ,y and D -, 5, respectively, turn out

to be quite intimately related to one another. Both are
reducible, but not completely reducible, possessing the
respective invariant subspaces denoted by E , ,) and
F(s -w-2),such that the irreducible factor spaces D, ,,/
E(,y and D - y-2)/F( g - -p) satisfy the isomorphisms

’

D(s,w)/E(s,w) ~ F(-s,—w-2)
and
D(s,‘w*2)/F(*s,‘W“2) ~ E(s,w)'

E ,) is finite-dimensional and spanned by the basis
vectors Y,,, |s|= 1= w,while F_ _,_, is infinite-
dimensional and spanned by the basis vectors _. Y, ,
1>w,

If

oC
Nes,-w-2) = lZJ>1 Qm -sYim € Deg-um2)
=ls
and
| blm sYlm < D(s,w)’
then the mappings from Dy, ,) = Fe-,-2) and
Deg -u-2y ~ E(su) can be given explicitly as follows:

[>e]
Pls,w) = Z:Z!>s

o

Pes-wm = 2

l=w+1

blm ‘SYZm = 66‘)’8*166‘0—S+1 (p(S;w)

€ Py ®  (2.9)

w

Ns,w) = E

l=]s

A s¥im = Tis,w) Nes,-w-2) E(s,w)vq (2.10)

where
ﬂ(s,w)ﬁ(—s,—w-z) = f M(s,w) €, ¢ C,C,)ﬁ("s,—w-z) (€, 8" aqa’

with dQ’ the area element of the unit sphere and

M(syw)(CJr ;C’E’)
f} Zl)  1)i*s w+ Isl+ 1)t —[s)!

T W w+ 1+ 1) w— D!

I's

x sYlm(g’C) __SYlm(C’,ﬁ'). (2.11)
The factor space D ,)/E,) is also isomorphic to the
two equivalent representations D(,.1 ¢-1) = D(y-1,-5-1»
so that if 7 ) © D(g then the mappings appropriate
to these isomorphisms are given by

N1, s-1 = 08 Mg € Dwst, -0 (2.12)

nli-w—lfs-l) =73 w+s+1n(s,w) € D(‘w*l,—s*l) . 2. 13)

The mappings (2. 9), (2. 10}, (2.12),and (2. 13) are all in-
variant under (i.e., commute with) the restricted Lorentz
transformations (2. 3).

3. E(s, w) AND TENSORS IN MINKOWSKI SPACE

At a point in Minkowski space, we consider the family of
all null directions (the null cone) parametrized by the
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points on a unit sphere. These (normalized) null vec-
tors have the form

(C,8) = (1/2V2P)[1 + €&, ¢ + &, (¢ — §)/i,— 1 + ¢E]
= V21 [(Yy0, (— IVO) (Y11 — o¥i-1), ((/VB) (Y11 + o¥q-y),
(1/¥3) oY 10]- (3.1)

For each null direction, one can define three additional
vectors:

ni = Ik + BB,k (3.2a)

mb=Bole,  mE = Flk. (3.2Db)
Together with I+ they satisfy the standard null tetrad
orthogonality conditions

lin, = —mem, =1, (3.3)
all other scalar products vanishing. In addition, for each
null direction, we have the completeness relation10

Nyw = 2[l(#nu) — m(”iﬁw], (3.4)
where M is the usual Minkowski metric Ny = diag(1,
—-1,-1,—- 1),

Thus, at a point in Minkowski space we have constructed
a family of null tetrad systems that are parametrized
by the points on a sphere. That is, the tetrad (1+(¢, ),
ne(€,8),mr€, ), mr(€,£)) may be viewed as being a
function on the sphere. If we contract a Minkowski ten-
sor, at the point in question, with one or more of the
tetrad vectors and allow the direction to vary over the
sphere, the tensor will also be converted into a function
on the sphere.

Under a restricted Lorentz transformation,i.e.,under
(2.3), the tetrad transforms as

Un = Kiu, (3.5)
m'e = eir(mi + HIv), (3.6)
a'h= Kl + Hme + Hme + HHI), (3.7

where H = 5 logK with K given by (2.5) and A by (2. 6).

We now wish to discuss the connection between irredu-
cible Lorentz tensors and elements of E . ,,. In particu-
lar we will restrictt! the discussion to trace-free ten-
sors with the following symmetry properties:

Atz — AWz - eny) (3.8)
and

Blvia Ve lishs B([plulj [pgrgle- [pgrgl) (3.9)
and show that

AE,B) = AR R (6,8) -1, (D) (3.10)
and

B(,L) = BHiP1-bsls g m, e 1 om, (3.11)

LTS Hs ¥

are elements of £, and E, ), respectively.
From (3.5) and (3. 6) it is clear that

A'=KvwA (3.12)
and B’ = Kseis*B (3.13)
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under (2. 3), so that A and B have the correct transfor-
mation properties under the restricted Lorentz group.

All that remains now is to show that A and B have the
following expansions in spin s spherical harmonics:

w 3
A= on m;jl A oY im s (3.14)
$§
B = Z) Bsm SYS"'l *
m=-s
By definition [, consists only of I = 0 and / = 1 spin-
zZero spher1ca1 harmonics (6“1 =0) and iy, isa
purely ! = 1 spherical harmomc (850, m,; = B4(1,801,;)
— 0], 5o that applying 51 to A in (3. %) and 5, to B in
(3.9) leads to D" LA =8,B = 0, and (3.14) and (3.15)
follow immediately.

(3.15)

As examples, the vector v = (v9, vl, v2, 03) is related to
the function

v= v#l“
[on (W + iv?) .
= Var o0 0Y00_\/ 3 (T o¥1-1 23 oY1
vl — fv2
- (\/——2) 0Y11> € Egp (3.16)
and the antisymmetric tensor
0 §01  §02 403
_S§01 ¢ §12 13

S=1_g02 _g12 ¢ §23

_ §03 _ 813 _ 8§23 ¢
is related to the function
S=S8wilm, =— (37)1/2 (503 + §12) Y10
— (3mMVZ(SI3 +4S02)(; Yy, + 1)
+ (3m)1/2(SOT + 4S23)(1V, — ,¥19) € Eq 1. (3.17)

w\»—

mj.—

We show, by example, how elementary tensor operations
such as products and contractions can be performed on
the equivalent functions on the sphere.

Suppose a = a#l and b = b*] are elements of Eppn,

G
A=Al Z“w € Eg,) and B = Bl m, € Eqy,

then if Cw = a(ubv) __ 4a°‘b v,
1 c= C“”l“lu = ab — za“banﬂ“lplu =abe E(o,z),

(3.18)
(2) a%b, = a~bbn 4
= a%bS(l ng + n, ly— m m, — m_ i)
= avbB(2l 1, + 1,5,80l5 + 1,581,
— Byl Bols — BylsBoly,)
= 2ab + abyByb + bBB,a — Byadyd — B,bBya
€ E(O,O)’ (3.19)
Similarly,
(3) AM"'uwﬂaaalul . e

= [ + 1)/w) Aa + AB Bya + (1/w2) ad 5,4
— (1/w)B8,ABya — (1/w)5,A80a € Eg 1y, (3. 20)

where the vanishing of the trace of AM1 """ Fw,

1881
— Al pw2®
0= Ak bwr® g e
= 24M TR L+ 1880l — Bol, Dol L, e L,
(3.21)
has been used:
(4) Brea,l, = Re[a%8y(B/a?)] € E q) - (3.22)

From these examples it is clear that by simply using

1, in the form (3.4), any inner product can be expressed
completely in terms of spin and conformally weighted
functions on the sphere.

In the next section we will use these and similar re-
sults, together with the mapping (2. 10),to obtain tensor
expressions (with algebraic manipulations) directly
from functions in D -, o).

4. APPLICATIONS OF THE MAPPING
Di.s,-w-2) = Efs,w)

Given the functions T(o ~w-2) € Dig -2y and S(_s -s-2) €
D¢, -¢-0), by the application of (2. 10), we immediately
obtain

To,wT©-w-20 = Touw

= T Hw l“l' . l“w c E(O,w) (4 1)

and

T(s,s) E(* s,7s72) — S(s)s)

e
= Q171 §°s ¥ s oen —

S lplmu1 l“smus € Egy, (4. 2)
where TW1""F» gnd S*1°1"""#s"s are tensors in Minkowski

space with the symmetries (3.8) and (3. 9), respectively.

Suppose, for example, we have a function V € D 1),
from which we should like to obtain another function v,
which is in the invariant subspace E 1y © D ). Be-
cause there is no invariant mapping of D 1) = E( 1)
this cannot be accomplished directly. However,we can
form the function V™3 € Dy _5) and then use 7, 1) on it
to obtain

v=wrl, =70 ) V-3, (4.3)

By writing v = v, + v, (where the subscripts refer to
the I-values of the subscripted quantities) it is clear
from (2. 11) that ¥V~3 can be expressed as

V-3 = vy — 30, + O(l = 2). (4.4)

[O(I = 2) means the expression is expandable in harmo-

nics with I = 2.] Let us examine what happens when we

form the function V3v € D, o) and apply 7 g to it:

1.0 V30 =1 {[ve— 30y + 01 = 2)][vy + vy}
=To0[v8 — (V] + Bov1Bov1)g + O = 1)]

v2 + v8,8,v — Byu8,v

=3z0v%0,,
where (3.19) and the identity
v = (303 + §890100v;)g + (302 — $8,0,000,),

have been used.

If the function V is such that v# is timelike and has the
normalization
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zvew, =12 + 060501)“?5005021 =1, (4.5)

we will refer to v* or v as a unit 4-vector and obtain in
this case

1o V3= zvey, = 1. (4.6)
For any unit vector we can show that
V¥ =T, w2 4.7

is satisfied identically in the following way. Choose

K = v~1 and thus use the Lorentz transformation (2. 3)
to put v = 1. The proof of (4.7) is trivial in this frame
and the Lorentz invariant nature of (2.10) guarantees
the result in general.

By putting w = 1 in (4. 7) we see immediately that the
use of (4.3) to define a unit 4-vector v € E ;) from a
properly normalized function V € D, ;) was a good
choice in that it not only still holds but becomes an
identity for the case V = v.

Essentially the same method that led to the result (4. 6)
can be used to generalize it to the following: Given a
tensor T **» defined from T € Dy, -5 by (4.1) and
any vector v,then

7T(O,w—l)i‘v = [w/(w + 1)]T“1”.Hw_lavo¢lu R/ (4 8)

1 Hw-1

The inner product between a vector and a tensor of the
type (4.2) must be handled somewhat differently than
the previous case, as the following example will illus-
trate.

Given the antisymmetric 2nd rank tensor S*¥ obtained
from S € D¢q -3 by

T, 1)§ =8 =Swlm, (4.9)

and the vector v = v¢l, ,how do we go about finding a
function from which we can obtain Sre v, l“ by applying
W(O, 1 to it?

We know that the function must be linear in both § and
v and have conformal weight w = — 3. The function
must also have spin weight s = 0 so that it will be
necessary to use the spin raising operator 6,. But
(2.12) tells us that in order to obtain something with
good spin and conformal weight, 3, can only be applied
to a function having s = w in the first place.

The simplest function we can form satisfying all of
these requirements is v™19,(Sv2). After working out
the details we indeed discover that

Rer, ) [07180(502)] = § Sk o, 1. (4.10)

'£he I_)roofzof (4.10) proceeds as follows: Write
S=8,+8,+0(=3)and v = v5 + v;. Then,
Rer, 1 [v718(502)]
= Rern, 1)[1)603 + 25‘5011]
= Rern, pllvg + vl)(60§1 + 60§2) + 2(§1 + §2)60v1
+0( = 2)]
= Reng, 1y [(— 3 1’150§1 + %§160”1 — 680,53 §1)o
+ (05805, + S1800y + $8v,525,), + O(1 = 2)]
= Re(~ 05,5, — $8,0,528))
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= 5 Re[138,(S/v2)]

1
= 3 Sk Ual“,

where we have used (3. 22), the identities

018081 = (59,805, — 581840, + & 8v,838)),

+ (30155, + $5,8qv; — 68,0,835;)s,
0150:2 =G 7)16052 - %5:25001 +15 5¥1885,)4

+ (20,85, + 25,800, — %6549,935,)5,
518001 = (38,8003 — 3 ¥1805; — 5 B,¥13%5,)g

+ (35,840, + i8,0,525,),

+ (5S,80u; + 3 0,85,5; — 5 8,0,835,),,
§2601’1 = (s Szzﬁovl — 501805, ~ 355 50”15%5:2)1

+ (%5:2501,1 +13 807}1635:2)2

+ (5 :260”1 + 3 U1605=2 — 1 50”1605:2)3’

and the fact from (4.9) that

Based on the preceding examples, we see that the general
procedure for constructing tensors from the infinite-
dimensional representation spaces is as follows: We
start with functions that are expandable in spin-weighted
spherical harmonics and which transform under (2. 3)
with spin-weight s’ = — s and conformal weight w’ =
—w — 2, where s and w are integers satisfying w =z |s|.
Then we use the mapping (2. 10) to define tensors in
Minkowski space from these functions. Finally,we de-
rive relations between products of the spin-weighted
functions and products of the tensors, similar to (4. 6),
(4.8),and (4. 10), that may be useful to us.

We conclude by giving some further examples, which
happen to be of particular interest in the study of gravi-
tational radiation reaction is asymptotically flat spaces,
Because the method of proof is basically the same in all
of these cases, the results will simply be stated without
additional proofs., Some results that have already been
given will be included for convenience.

Suppose we are given the following functions on the
sphere:

V=Vt e Dgy,'2 (4.11a)
p = b, ¢,8) € Dg g, (4.11b)
T =Tw,t,%) € Dgq-s), (4. 11c)
§ =528 € Dy s (4.11d)

We can define the following tensor quantities from these
functions:

TV 3=v=0l, (4.12a)
77(0,1)1; = p = prl,, (4.12b)
1oz T = Twel, 1,1, (4.12c)
n(Ll)S: = S =8 m,, (4.12d)

T (= iS) = iS = *Sl“’l“my,
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where "Skv = j emvpo S is the dual of S, Normalizing
V such that
To o V30 =30, =1, (4.13)

We can then derive the following additional relations
among these quantities in the manner of (4. 10):

To,0 bV =32 p%v, = m, (4. 14a)

o, 0 [V 1808o(pv3)] = — 2(p — mv) = — 2(p+ — muk)l

M

(4. 14b)

70,0 [U7B (v3)] = — 3(prov — prom)m,,  (4.14c)
Rem, 1)[”_150(§02)] = 3 Spey, L (4. 14d)
Imm 1y[v 150(5:"2)] =—g*Srav 1, (4. 14¢)

Moo Tv=4Tweyl,l,= Twll,, (4. 14f)

T Tv? = s Thebyp,l, = 5 Thew I, = Tl (4.14g)

- 1
W(O,O) Tv3 = 7 TaﬁYUaUBU

b

Y
4. 14h)

1 1
=37 v, =3T%, =T

TopTvd=3THbo 01, (4. 141)
N(O, 1) Tl}z = %T’Jaﬁ bal}ﬂ lp s (4. 14J)
T, [ 1880 (Tv1d)] = (Ted w# — $ Twed )L, (4.14K)
T, p[v28o(Tv4d)] = — 2Tred 0¥ — Tve) o)1,
- . (4.141)
T, [ Tv30,(v/v)]
= (Thag ¥ — TV vk — Teep pv + T”“vai}“)l“my.
(4.14m)
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We present an exact calculation that leads to the equations of motion (which naturally contain gravitational radiation
reaction terms) of a system subject to no external forces. The novelty of our approach lies in the fact that the system is
to be considered as the source of an asymptotically flat space and that all the revelant physical quantities such as the

velocity v¥, 4-momentum p*, angular momentum-center of mass tensor S** (as well as higher moments) are then

defined in terms of surface integrals taken at infinity. A subset of the Einstein equations (equivalent to Bondi’s
supplemantary conditions) then yields the time-evolution equations for these variables.

1. INTRODUCTION

The study of equations of motion in general relativity
is of great interest due (among other reasons) to the
fact that, among physically interesting classical fields,
the Einstein field equations are the only ones which de-
termine the motion of their sources. This is basically
a result of the general covariance and nonlinearity of
the theory.! In other field theories, such as electro-
magnetic theory, the equations of motion must be postu-
lated separately.

Another important area of study in general relativity
has been the investigation of asymptotically flat spaces.
Originally, these investigations were based on reasonable
guesses concerning the behavior of the metric as spatial
infinity was approached. The situation was greatly im-
proved by the work of Bondi e/ al.?2 and then Sachs3 who,
utilizing the idea of approaching infinity along charac-
teristic (or null) surfaces, determined from simple
conditions the asymptotic behavior of the metric tensor.
A further development was the spin coefficient forma-
lism? (NP) and its applications4-5 (NU) in which the
emphasis was shifted from the metric to the Weyl Ten-
sor and its behavior in the vieinity of null infinity,

It is the purpose of this paper to apply the ideas and
techniques developed in the study of asymptotically flat
spaces to the subject of equations of motion in general
relativity. The notation we use is that of the spin co-
efficient formalism.

Although the essential ideas are very simple, the imple-
mentation of them is quite complicated, involving some
very powerful results from the theory of infinite-
dimensional representations of the Lorentz group.
Basically we are considering a finite physical system
and studying its properties at future null infinity. The
basic physical variables of the system, such as the
energy—momentum vector, the angular momentum-cen-
ter of mass tensor, 4-velocity (and possibly higher mo-
ments) are defined by certain surface integrals over
asymptotic values of the fields. The field equations {or,
more specifically, the Bianchi identities or the supple-
mentary conditions in Bondi's terminology) then yield
the time evolution of these physical quantities and thereby
constitute the equations of motion. We emphasize that
we are concerned with the motion of a single composite
system and not with the relative motion of its component
parts. (We are thus, for example, not dealing with the
two-body problem.) The final result (arrived at with no
approximations) will resemble the equations of motion
of a free particle with intrinsic angular momentum, but
modified by radiation reaction terms arising from accel-
erations and changing quadrupole and higher moments.
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The entire idea is almost perfectly analogous to defining
electric charge in classical electrodynamics by a sur-
face integral (Gauss' Theorem) at infinity and then using
the vacuum Maxwell equations to prove that it is con-
served.

In Sec. 2 we present a detailed review of the properties
of asymptotically flat spaces. Although it is in essence a
review of (NU), considerable modification and simplifi-
cation of notation is achieved through the use of the
operator 0 and the notion of spin weighted functions.
Here we shall find the time development equations for
the tetrad components of the Weyl tensor which impli-
citly contain the equations of motion,

In Sec. 3 we investigate the asymptotic symmetry group,
the so-called Bondi—Metzner—Sach (BMS) group2:3.5-9
expressed in a very general null coordinate system.
Utilizing the idea of the Winicour—-Tamburino linkages19
and the generators of the BMS group we find, in Sec. 4,
integral expressions which are identified (by definition)
with the energy—momentum 4-vector and the angular
momentum-center of mass tensor of the source. They
will be referred to as physical quantities or tensors.
We point out that, although these quantities transform
properly under the homogeneous Lorentz group (which
is well defined in asymptotically flat spaces) and agree
with expressions obtained from source properties in the
linear theory, one cannot say with complete confidence
that they are the unique expressions for the physical
quantities. Any reasonable modification of the definitions
would, however, not fundamentally change our final
results.

In Sec, 5, there is first a review of some results from
the preceding paper,i! which relate (by integral opera-
tors) infinite-dimensional representations of the homo-
geneous Lorentz group tofinite-dimensional ones. These
integral operators are then related to the integral ex-
pressions (Winicour—Tamburino linkages), which have
been identified with physical quantities. Finally, by
applying the integral operators to the Bianchi Identities
(after much manipulation), we obtain the evolution equa-
tions (or equations of motion) for the physical quantities.

Section 6 is devoted to a discussion of the coordinate free-
dom, or more precisely, to an attempt to eliminate the
coordinate freedom. First, we use coordinate conditions!?
(different from the Bondi type), which are associated
with “canonical” slicings of null infinity. These canoni-
cal slicings are generalizations of the slicings of future
null infinity in Minkowski space, produced by the families
of light cones emanating from arbitrary timelike world
lines. From these slicings we conjecture that a unique
one exists which can naturally be called the center of
mass coordinate system.
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2. THE ASYMPTOTICALLY FLAT SOLUTIONS

In this section we present a review of the asymptotically
flat solutions. In a four-dimensional Riemannian space
of signature (+,—,—, —), one introduces a null tetrad
Z,,=,n,m,  im,) composed of two real null vectors
{, and n_and two complex null vectors m , and W“, with

tf'lle ps euﬁo—orthogonality properties g

[k =—m mt =1, (2.1)
all other inner products vanishing.
Equation (2. 1) implies the completeness relation

gry =Y + pElY — miemY — mim Y, (2.2)

or gtv=Z,"Z vnmn, where n™" is the null Minkowski
metric

01 0 O
10 0 O

(Sl (PP I (2.3)
0¢6—-1 0

which is used to raise and lower tetrad indices.13

A null coordinate system and its associated null tetrad
system Z,, is introduced by first considering a family
of null hypersurfaces labeled by a parameter u = const,
i.e.,

&“Vu u , =0. (2.4)
(A comma denotes ordinary partial differentiation and
a semicolon, covariant differentiation.) We then choose
the first tetrad vector /* to be orthogonal to these hyper-
surfaces, so that

Il =u (2.5)

U '
Since these are null hypersurfaces, the vector 7+ will
also be tangent to a family of null geodesics in the hyper-
surface and, therefore,

v P o e, (2.6)
It is convenient to choose for coordinates x9 =« and

x1 =, where # is an affine parameter along the geo-
desics with tangent vector /#. Thus, I, = 68, =
dxi/dr =ghvu , = gr0 = 6, and I+ IV = 0 since 7 is
affine.

The two remaining coordinates x2 and x3 will label

directions in the null surface, i.e., they will label the
geodesics on each hypersurface u = const.

In order to satisfy Eqs. (2. 1) with the above conditions,
the tetrad system must have the form

1, =09, Ir=5t, (2. 7a)
nk = 85 + Udk + XAsk, (2. o)
mF = wbf + £464, (2.7¢)

where w, £4, U, and X4 are arbitrary functions of the
coordinates.

The completeness relation (2. 2) then enables us to write
the metric as

1885

01 0 0
1 g1t gl2 13
&= ) , (2. 8a)
0 g21
gAB
0 g31
where
gl = 2(U — ww), (2. 8b)
gla=XA— (t4w + £ 4w), (2.8c)
gAB = — ((ALB + EALD), (2.8d)

Along with the above conditions on /* we impose the
further condition that n# and m* be parallely propagated
along the null geodesics.

From the tetrad one defines the Ricci rotation coeffi-
cients

ymnb = Zﬁ”’.uZ"uZPU (2.9)
and then the spin coefficients
K=yi131 = L, mHlY, vV ="yy4p :_np;v;lunvs
p :Y134:lp;u”1“;i"y uz*y243=*nu;ﬁwm",
0 =yy133 =, ,mFm?, A =—1yyy :—n“;uﬂqu%v,
T=y1ap = L MERY, T = yggy = —n mel,
(2.10)

-

Il
tolm = W=y
— o~ o~

('}’124 - 7344) = %(Z“;Un“;z” - mu;umll;?z”),

® R
[
I

—
o~

7123_7343) p;un“mv —7’}’1“;11771“}71”),

7122_7342) '(l#;unﬂn”—m“”ﬁi#n”),

—
o

=

1
(I T FTES

=3ly10y — v341) Wl ’“mp;u;“il")-
where k =7 =€¢=0,p =p and 7 = @ + 8 due to the con-

ditions on {* and the parallel propagation of the tetrad.

Tetrad components of a tensor are defined by

A ves :A.“U"'Z VA

.
mn mu“nv

(2.11)

In particular, when applied to the Weyl tensor we have

Yo =— C“ypclﬂm”leo,
V1 =—=C, 0t lPme,
Yo =— C“ypoﬁ‘zunulpmc’, (2.12)
V3 =— Cu vpo;l#nulpno’
Wy =—C,, mHn'mPnc,
Intrinsic or directional derivatives have the form
D= q. [¥ Ap = ¢. n#
M (2.13)
bp = @, mt, bo=¢, mh
where
_3 _9 4 pl @
- A_8u+U81’ X oxA4?
5 s (2.14)
b=wl 440 T=u 8 ,Fa-l
7 ¢ axA ar T8 e

The spin coefficient formalism (NP) consists of three
sets of first order differential equations for the three
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sets of variables, the Weyl tensor components, the spin
coefficients, and the tetrad components (also referred
to as the metric variable), which are equivalent to the
Einstein field equations.

Before summarizing the asymptotically flat solutions

of these equations, we review!4 some properties of the
differential operator edth d and the idea of spin weighted
functions. This will enable us to express the solution in
a more compact form,

Consider an arbitrary two-~dimensional surface with the
metric in conformally flat form, i.e.,

1 dtdt

ds2 :ﬁ[(dxz)z + (dx3)2] = FER (2,15)

¢ =—(x2 — ix3),

(The coordinates x2 and x3 will eventually represent the
coordinates introduced earlier to label a null geodesic.
The peculiar form for the complex coordinate { has
been chosen purely to make the conventions used here
conform to those used in other papers.) Let

mA = (1/42 ) (aA + ib4), (2.16)

where a4 and b4 are orthonormal tangent vectors to the
surface. Under a rotation in the tangent plane we have
(2.17)

’ .
mA = givpA,

Any function 7 defined on the 2-surface which transforms
under (2.17) as

1’ = eisep, (2.18)
is said to have spin weight s.
The operators 5 and & are then defined as
5 = 2P1—sa—(gj%si), (2.192)
n = 2Pl+s 5(};—;7’), (2. 19b)

where 7 is any spin weight s function, B(8) has the im-
portant property that it raises (lowers) the spin weight
by unity. Their commutation relation is

(5% — 58)n = 2sndB InP. (2.20)
For any suitably regular function 7 of integral spin weight
s > 0 (s < 0), there exists a function W of spin wieght
zero such that

n=58W (n=70"3W). (2.21)

This fact can be used to define the “electric’ and “mag-
netic”’ parts of 7, M,» and 77, :

s> 0: s < O
n, = 5s(ReW), 7, =35 5(ReW), (2.22)
N, = 8s(ImW), 7, =i5-s(ImW), (2.23)

where n, +1,=1.

If P =P, =4(1 +£E),1i.e., the 2-surface is the unit
sphere, then the corresponding operator 8, and the sphe-
rical harmonics can be used to define the spin s spheri-

cal harmonics (Y,,. (See Ref. 14 for the definition.)
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Any suitably regular function on the sphere 7 with spin
weight s can be expanded in the form

n= 3 Z A Y (2.24)
L=1s] m=-
The (¥, are also eigenfunctions of 8805
B8y (¥, = [— W +1) + s(s + 1)].Y,,,. (2.25)
Finally, it can be shown that
By (Y, = 0=0_,Y,, (2.26)

i.e., 8, annihilates a function with spin weight s = /, and
60 anmhllates a function with spin weight s = — L.

With the aid of 8, defined above, and the complex coordi-
nate £ =— x2 + ix3 we are able to present the following
summary of the asymptotically flat solutions of the spin
coefficient equations:

components of the Weyl tensor:

Yo =¢Jr> + 0re), (2.27a)
Y =Yt +ByYdrs + 0(r-6), (2, 27b)
Vo = Y9r3 + 8yYfr-t + 0(r-5), (2.27¢)
Vs =92 + Tydr3 + 0(r9), (2,27d)
Yy =Yl + oyr2 + 0r3); (2.27e)
spin coefficients:
p=—71— g0 0r-3 + O(r-3), (2.28a)
0 = %2 + (000" — Y84+ Or-5), (2.28b)
a = a%-1 + 00a0r-2 + 9000073 + O(r4), (2.28c)
B =— a1 — 002 — (g000a0 + 1y Q}r-3 + O(r-4),
(2.28d)

7 =— 293 + §(a0PQ — 2By Q)r-4 + O(r-5), (2.28e)

x = a0p-1 ~7,0“0,,—2 + (090020 + %_ood,(z))y-s + O(r-4),

(2,281)
p= p0r-1 — (0OA0 + Y9)r2 + (oY 0 — LTy Y3
+0@1), (2.28g)
y =90 = 50%r 2 + (el — {Y a0 — 5y r3 + 0lrt),
(2.28h)
v =10 — ¢l —1ByY + O@r-3); (2.28i)
the metric variables:
= (P/P)r — 5% InP — 3§ + yr?
— 8@y + 5y + 0r3), (2.29)
XA = 5(WIEOA + YO£04)-3 + O(r4), (2.29b)
£A = g0Ap-1 _g0E0Ap-2 4 g0G0£0A-3 + Op-4), (2.29¢)
where £94 = (P, iP),
w = wirl —(c%° + Lyr-2 + O(r-3), (2,294)

(A dot denotes differentiation with respect to u.)
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Further relations between the coefficients of the dif-
ferent powers of v are

v0 = — L(P/P), (2.30a)
a0 = — 3P/3€ = — 1% InP, (2.30b)
W0 =3 P/P, (2.30c)
wd =~ ¥¢0, (2. 30d)
A0 =50 _ GOP/P, (2. 30¢)
W = U0 = — 5% Inp, (2. 30£)
(W9 — P9) = F200 + 0OX0 — 555 — 00x0,  (2.30g)
Y3 =350 InP + 519, (2.30n)
W9 = —B2(P/P) — A0 + 2(P/P)\O. (2. 301)
Finally, we have the dynamical relations
¥9 — 3(P/PWG = — I + 3009, (2. 30j)
YO — 3(B/PW] = — By + 2093, (2. 30k)
U9 — 3(P/PWy = — By + 0%, (2.301)

If the metric tensor is constructed from the tetrad com-
ponents, using Egs. (2. 8), the 2-surface,« and » constant,
in the limit as v — «, has a metric of the form

2 lim (r-2ds?) = dgdg
¥ =00 P2

We assume that P can be written as

P(u’ §: E) ZPOV(L{, C’E) = %(1 + CE)V(ZbC’E); (2.31)
where V is to be a regular function, with no zeros, on the
sphere, i.e., expandable in spherical harmonics, V—1
can be interpreted as the deviation of this limiting 2-
surface from sphericity.

A second interpretation, which we mention without proof,
is the connection of V with the rate of change (at infinity)
of our null coordinate system with respect to a Bondi
type null coordinate u g, namely

ou
y-1 o %
T oug'

Closely associated with this interpretation is the fact
that using the present type of coordinate system in flat
space yields15

1
V=v=2 v,,Y,,7%),
=0

where the four v, are in one-to-one correspondence
with the velocity vector of the world line defined by the
apex of the null cones, # = const. Later we shall show
that even though the # = cont null surfaces in asymptoti-
cally flat spaces are not exact cones and do not possess
an apex, it will still be possible to interpret them as if
they did and to extract by Lorentz invariant operations
on V a 4-velocity v#. Under appropriate circumstances
v# will be interpreted as the velocity of the center of the
source.

OF MOTION
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Returning to the main discussion, if we use the operators
8, and &, defined by

Bon = 2Py a(lzo;"), (2.32a)

_ 3Py

Byn = 2B+ dBym) (2. 32b)
o

where 7 is any spin weight s function, and introduce the
s = —2 function

0 _
%-2+—‘1;6(2)V, (2.33)

R =
we find that several of the equations in the set (2. 30)
may be greatly simplified. For instance, (2. 30i) and
(2. 30h) become

Yy =— V2R (2.34)

and

¥ =5(V2R) = V35 R. (2.35)

Furthermore, if we define the s = 0 function

P=—ws—5%" + 6%0% — "W/ MV, (2.36)
then after considerable manipulation (2, 301) and (2. 30g)
become

p=— 32V + B2RY)

+ B3R V) — VRR (2.37)

and

p—p =0. (2.38)
We note for future use that the first three terms on the
right-hand side of (2. 37) cannot possess any [ = 0 and

! = 1 spherical harmonic terms, This follows from the
annihilation properties of &2,

Finally, by introducing the s = — 1 function
65 = — [¥9 — 18(0000) — 50B00] V-3, (2.39)
the complex conjugate of (2. 30k) becomes
6§ = — V-35(FV3) + 09T OV-3F(V/ V)
—V-3[2005%5 InP + 00560 + 460800
— 85200 — 359800 — 100559]. (2.40)

In order to keep the motivation clear, in the midst of this
over-abundance of definitions, we anticipate results of
the next several sections by pointing out that  and §
will play a basic role. More precisely, we will arguethat
the four coefficients of the ] = 0 and / = 1 spherical har-
monics in the expansion of  become the 4-momentum

of the source [note the importance of the reality of 7,
(2.38)] and that the three complex (six real) coefficients
of the [ = 1 spherical harmonics in the expansion of S
become the angular momentum-center of mass tensor,

It should, therefore, already be clear that Egs. (2.37)

and (2, 40) implicitly contain the equations of motion.
The analysis involved in obtaining them explicitly will

be quite complicated.

As a last result of this section we write out the asympto-
tic form of the finite coordinate transformation (connect-
ed with the identity) which preserves all the relations de-
veloped up to this point [see (NU)]:
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=G, §,T) +0(r1),
r' = Gly + 0(1),
¢ =(af +b)/ (€ +d) + Olr-1),

where in principle the order symbols are determined
in terms of G(u, £, £) and the constants a,b, ¢, and d.
Notice the natural appearance of the homogeneous
Lorentz group through the fractional linear transforma-
tion.

(2.41)

Although it is possible by the proper choice of G to make
V =1 and thereby arrive at Bondi coordinates, we will
avoid doing this. Instead we leave the coordinate free-
dom open for the time being. In the final section we will
argue for a different choice, dictated by a center of mass
condition,

3. THE ASYMPTOTIC SYMMETRY GROUP

In this work we consider that the asymptotic coordinate
group (discussed in the previous section) and the asymp-
totic symmetry group (BMS) are to be regarded as two
distinct entities. This may be thought of as being analo-
gous, for example, to the distinction made in three-
dimensional Euclidean space between the transformations
between arbitrary coordinate systems and the symmetry
transformations generated by solutions to the Killing
equation. In fact, the asymptotic symmetry group will
not be thought of as a group of transformations at all,
but rather as a set of descriptors (generators) from
which we shall be able to define energy—momentum,
angular momentum, etc. (We neglect the difficulties,
which are not insurmountable, associated with the fact
that the homogeneous Lorentz group is not an invariant
subgroup of BMS,)

The infinitesimal BMS group is obtained from the asymp-
totic Killing equation

%gpu =l T, = Olr=n), (3.1)

(‘égp,,)l” = (¢ (3.2)
where » differs with the choice of components, (See
Refs.5 and 9.) Solutions to (3.1) may be found either by
transforming the solutions, already known®:? in a Bondi
coordinate system, to our coordinate system, or by
direct integration. (See Appendix A.)

The results may be summarized by writing

+E,NY =0,

7

gn = Alr + Bnit + Cmu + Cm#, (3.3)
where

A=Ay +Ay+A 71 +0W2), (3.4)

B = B,, (3.5)

C=Cy+Cy+ Cyrt + Olr2), (3.6)
and

A, = (/V)BLV),

Aq EBO + B,83 InP, (3.7

A = M[BoWg + 99 + Ty + C,¥9],

C1 =c(g,8)/v, withd,c=0, 3.8)

Co, =8By + Cy0°, C,=0,
By = b(g,0/V — (1/2V)f0u V3[5,(C ¥ -2) + BylcV2)]du.
(3.9)
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Note that the only freedom in the solution is in (¢, T),
an arbitrary function on the sphere, which is the super
translation freedom, and solutions to §,c = 0, which
correspond to the homogeneous Lorentz transformation
freedom. (See Ref. 16 for details). In fact, if we return
to a Bondi system,i.e., V = 1, then (3. 3) becomes the
conventional form of the infinitesimal BMS transforma-
tion. In particular (3.9) becomes

By = b, 0 + ku, (3.10)
where (£, £) = — 3(5,c + B,¢) is the infinitesimal con-
formal conformal factor 16

In the next section the asymptotic Killing vectors,
Eqs.(3.3)-(3.9), are used in the Winicour-Tamburino
linkage expressions to obtain definitions of the energy-
momentum 4-vector and the angular momentum-center
of mass tensor,

4. THE WINICOUR-TAMBURINO LINKAGES

In this section we shall use the linkages defined in Ref, 10
to obtain definitions for the energy—momentum and
angular momentum. When making use of the equations
from this work, some caution must be exercised. Tam-
burino and Winicour use a metric with signature + 2,
whereas the present metric has signature — 2. Also, only
one of the two real null vectors ~¢ and m* used in
Winicour—Tamburino can be carried over directly into
the present notation. Their k* can be equated to our

I+, However, the m# of Winicour~Tamburino cannot be
equated to »n# for the following reason. In order to form
the linkage integral correctly, the two complex null vec-
tors must have no components in the x°,x1 directions.
At the same time the tetrad must satisfy the pseudo-
orthonormality conditions (2. 1), In the present notation,
the complex null vectors m#* and m#, given by Eq.(2.7c)
do contain components in the x! direction. Therefore,

to make use of the linkage expressions we must find one
real and two complex null vectors, denoted by »* ,mH’
and mﬂ’ such that m#’ and mu’ have no x1! component

and [+, n“’ m*’ and m#’ satisfy the pseudo-orthonormali-
ty cond1t10ns (2.1).

Since the set of vectors I#, nt/,m#’, and m+’ must satis-
fy Egs.(2.1), it is clear that they must be related to the
tetrad ¥, »#,m#, and m# by a null rotation about I#
given by

In' = [, (4.1a)
nt' = mnk + Hme + Hme + HHIv, (4. 1b)
me =me + HI#, (4.1c)

Thus, m*’ = w6, # + £0,# + H0,* and by the choice

H = — w we can eliminate the component in the x direc-
tion contained in m#’ and m#’. This implies the follow-
ing:

nh =t — wmt — wmk + wwlk, (4.2)

After correcting for the difference in the signatures of
the metrics, it is possible to write the linkage integral
in the present notation as

L (%) =1lim [(gluvl + g

¥ 00

l[Hn’”})lpnjde, (4.3)

where L(9+)is the linkage evaluated at future null infinity

(94).
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By making use of the radial dependence of the spin co-
efficients, Egs. (2. 28), and the radial dependence of the
tetrad components of the descriptors of the asymptotic
symmetry group (previous section), Eq. (4. 3) becomes,
after a very tedious calculation,

L (s5) =

L{b[wQ + 9 + 000 + GORO — 5250 — T2¢0]V-3
+ 299 — 209800 — B(0000)]V-3
+ (249 — 209500 — §(c000)|V-3}ag,

where d2 = dtdt/P,2.

(4.4)

When the angular dependence of b is restricted to each
of the four ! = 0 and 1 spherical harmonics, the four
parameter translation subgroup of the BMS group will
have been singled out. If, in addition, no homogeneous
Lorentz transformation is allowed,i.e.,c =¢ =%k =0,
then (4. 4) yields, by definition, the four components of the
energy-linear momentum vector.

If, on the other hand, b = 0 and ¢ = 0, then, since ¢ is a
spin weight one quantity and satisfies 8,¢ = 0, it has the
form ¢ = a,,Y; ,,, with a,, being three complex constants.
The three complex (6 real) values of (4.4) are, once
more by definition, the angular momentum-center of
mass tensor,

We point out that the coefficients of b and ¢ are,respec-
tively, proportional to what we earlier called p and S.

Equation (4.4) is used only to justify the identification,
up to a factor, of the ] = 0,1 parts of f and the = 1
parts of S with the 4-momentum and angular momentum-
center of mass tensor, respectively. In the next section,
using techniques from the theory of infinite-dimensional
representations of the Lorentz group, we shall extract
from p and § in a Lorentz covariant fashion explicit
expressions for p# and S#? and their dynamical laws.

5. EQUATIONS OF MOTION

Let us first review what has been accomplished thus
far. Asymptotic symmetry considerations have led us
to two functions, defined at future null infinity, pu, ¢, ¢)
and S(u, ¢, €), and to the identification of certain of their
components with the physical quantities p# and S#¥. By
examining asymptotically flat solutions to the field
equations, we have learned that p is real (2. 38) and that
the Bianchi Identities yield the time evolution of p (2. 37)
and S (2.40). We have also introduced the function

Viu, €, €) and suggested that a part of it is related to still
another physical quantity, namely, the 4-velocity v*.
Furthermore, we have pointed out that, in asymptotically
flat spaces, the homogeneous Lorentz group is well de-
fined at future null infinity in terms of the fractional
linear transformation

_al +b ab,

C,_C§+d’ cd“_l

(5.1)

to which it is isomorphic. In this section we shall first
explicitly define the physical quantities mentioned above
and then obtain the equations of motion, both in a Lorentz
covariant way.

In the preceding paper!?! (to which the reader may wish
to refer at this time) we discuss spin and conformally

weighted functions on the sphere, that is, functions which
transform under (5. 1) with spin weight s and conformal
weight w, as defined by (2. 7)’. (In this section reference
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to equations from the preceding paper will be indicated
by a prime.) Such functions form a vector space, de-
noted by D ), upon which infinite dimensional repre-
sentations of the Lorentz group act. Of particular in-
terest to us are spin and conformally weighted functions
that form the vector spaces D ) and D
= D, .2, Such that

(st=-s,w=-w2)

s and w are either integer or half-integer (5.2)
andw > |s|. )

Neither of these spaces is irreducible. D ., for instance,
contains a finite-dimensional invariant subspace
E <D Furthermore there exists a mapping,

(s.w) (_s’_ _2) “E(¢wy defmed by (2.10)’ and (2. 11)’,
which commutes with the Lorentz transformations. Th1s
means that, given any function 17( oy E D oy
such that s and w satisfy (5.2), H(s ») Can be used to
define another function

(s,w)

(5.3)

n(sw) H(s w)n( S, w Z)CE(SW

in a Lorentz covariant way. As is shown in Sec, 3 of the
preceding paper, the functions that form £ ,, can be
directly related to Minkowski tensors.

We shall now apply this procedure to our case., First,
we point out that it can be shown that under (5.1)

Vi, 8,8) € Dio,1)™ V> € Dy 3 (5.4a)
Plu, ¢, 8 e Dy 3y (5. 4b)
S:(u, C’ E)E D(—l,-3)' (5.40)

Based on the results of the preceding paper.this means
that we can define 4-vectors from V-3 and f and a trace-
free, antisymmetric second rank tensor from S as follows,

U“ZL = U = H(O'l)V_S

YOO(Q)fYOO(Q’)V(Q’)‘3dQ’
1 1

- 3 fylm

P“ZL =p= H(O,I)P’

Sivliml, =S =T 18

1
-z
m=-1

1l

)-3aQ’,

Y1, [T, @08 (@)ae,

where V has been normalized such that
o o) V30 = [V-3vda =4veow, = L.

It is useful to define an additional function
T = ¢950y75 e D(o.-5)

from which we can define the following trace-free,
symmetric third-rank tensor

YOO(Q).[YOO(

ARNVT(Q)d

Teve L 1L =T 4T = Q)T )ag’

1
-t % Yy o) Y,

m

gl '

+ 5 , Yo Q) [ Vo, ( Q) T(2)dS2!

3
"

Mm

= . Y3,,(9) [ Vo, ()T

m
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[The vectors [, and m, that appear in this section are
given by (3.1) and (3.2b)’, respectively.]
Equations (2. 37) and (2. 40) can be rewritten as
p =—BEBEZV + 53RV) + TRRV)

— Top +4T02 + F, (5.9)

6S = — 028, (pv3) + Tv3T,(0/0) + 67, (5.10)
- ) - oo\ [ 5o\
F=—[096%3]— |[RRV— () {~)v? (5,11)

and

67 =[$59500 +100550 — 359860 — 250550] V-3
— [2V-3698%5 InF,V — V385200 + V-35($V3)
~ OGO V-35(V/V) — 1728 o (Fo3) + 0950023 4(5 /).

(5.12)
Each term in (5. 9) has spin weight s = 0 and conformal
weight w = — 3, so that Il ;, can be applied to it direct-

1y to obtain
bu=Fr + 3 To o vb — §T08 + LiveBy p, + 208y o,
(5.13)

Similarly, (5.10) consists entirely of s = — 1,w = — 3
terms and application of (1,1, yields

Swv+ pluprl = Juw — L pylugel — Lelugpvl + %tdpﬁﬂiva,
(5.14)

where extensive use has been made of the relations
(4.14)’ from the preceding paper and where

FRl =T, (5. 15a)
Iwlmy =T 1,7, (5.15b)
Tw = $Twey (5.16a)
TH = & Tuay —iTneby 4 | (5.16b)
T=3Tw,=35Ty v,=3T®Y0, 050, (5.16¢)
thve = TWe — T(pkpvor — nlevye)), (5.17a)
= Tw — T(phpv — Ipw), (5.17b)
th=Th—Tok, to =0, (5,17c¢)

In Eqs.(5.9) and (5. 10) all of the explicit dependence on
v and v is exhibited in the terms involving the function
T. The expressions F and J depend only on 0© and the
higher {{ > 2) harmonics in V. (The second of the brac-
keted terms in both (5. 11) and (5. 12) vanishes if V = ».)
Therefore, F* and J#¥ are independent of velocity and
acceleration and are, respectively, the radiation reaction
force and torque due to the mass {sometimes called
“glectric type”) moments and the spin (“magnetic type”)
moments.

By contracting (5. 13) with »# and defining the inertial
mass by

m = —;—pava, (5. 18)

J. Math. Phys., Vol. 13, No, 12, December 1972

LIND, MESSMER, AND NEWMAN

we obtain

pE = mok F Spoy ~Juoy  — Y Tiu + Hop pp — dpueg
(5.19)

Elimination of p# between (5. 19) and (5. 14) yields

Swv = Jw — Selp vuiy, +Jdeprly  — Lilugvl,

(5. 20)
Finally, substituting (5. 19) into (5. 13) yields
mor = F# — JFoy pit — 3“01)0 + J-“"‘Uq
+ 3T (D6 + 000 o0) + 510 e
— Lteson +3(Fned — LiaBry vi)y By
+ 5(tHed — JreBYy we)p By + 99,8 ) {5.21)

and 7 = §(Foy — SeBy gy +JoBy D, + (o + (9B 0,).
(5.22)

It should be noted that although the fifth term in (5, 21)
is similar to the radiation reaction term in the Lorentz-
Dirac force law with Z¢2 replaced by $T(7T = Tg,0)T°

= [0%v-2dQ = 0), the radiation reaction force is vastly
more complicated in the gravitational case.

Although (5. 22) yields the time development of the
inertial mass, it is p© which is the Bondi mass, and the
Bondi mass law is easily obtained from (5. 13) in the
following way. From (2.37) we see that

pHL, = — (o, RRV. (5.23)
Taking the [ = 0 part of (5, 23) we obtain
pO1 = (1/42 p° = — [RRVAS < 0. (5.24)

We have used units in which the gravitational constant
is one. When conventional units are used and the limit
of zeroc gravitational constant is taken, (5. 13) and (5. 14)
reduce to

pr =0, (5. 25)

Sw + pleprl = 0, (5.26)
the usual Lorentz invariant equations of motion for a
free particle with intrinsic angular momentum,15

6. DISCUSSION

In addition to the question of the reasonableness of the
definitions of the physical quantities (in particular, the
angular momentum and center of mass), there remains
the difficult and important gquestion of which family of
2-surface at infinity should be used in the evaluation of
these quantities. (Due to the manner in which we have
set up the problem, this question is equivalent to asking
which null coordinate system should be used.)

To investigate this question let us first study an analo-
gous situation in electrodynamics in Minkowski space.
Consider a finite charge distribution anda null coordinate
system based on an arbitrary timelike world line,16
Relative to this coordinate system, one can describe
(actually define) the multipole moments of the source
distribution by looking at the angular behavior of the
asymptotic field. (We emphasize that the moments de-
fined in this manner do not agree with the usual defini-
tion of the moments, e.g., @, S Y,,.rtpd3x, where the
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source properties are taken at a fixed time. In our
case the integral is essentially taken on the light cone.)

It is clear that if a second world line is chosen asthebase
.line for a different null coordinate system, then the
associated moments will, in general, bear little relation
to the first set of moments. (The transformation proper-
ties involve the history of the source.) It appears most
likely (but to our knowledge not explicitly proven for
these “null’ type of moments) that a timelike world can
be chosen such that the associated electric dipole moment
is zero. Such a line could be called the center of charge
line,

The natural question arises: Can the same ideabeapplied
to the center of mass in either the linear of full theory
of gravitation? In other words, can we find a coordinate
system such that the associated center of mass is zero?
In the linearized version the difficulties are exactly

the same as in the electrodynamic case, while in the full
theory the difficulties are vastly increased.

In the first place the null surfaces which we have been
using do not, in general, have conelike behavior i.e., they
do not possess an apex) and thus a family of them does
not define a world line in the interior. However, in a
recent paperl? it was shown that there exist “canonical”
families of null surfaces (surfaces of, in some sense,
minimal asymptotic shear) which have many of the pro-
perties one associates with the families of null surfaces
constructed from a world line in Minkowski space. In
particular, the transformation freedom between two
different “canonical” families is the same in both cases
and depends essentially on three functions of #. This

is (numerically) the correct amount of freedom to be
able to set the center of mass (or charge) equal to zero,
This observation, of course, does not constitute an exis-
tence proof. It, however, lends plausability to the conjec-
ture that by an appropriate coordinate condition one can
obtain supplementary conditions (to the equations of
motion) of the form

Sway, =0 (6.1)
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or possibly

Shap, = 0. (6.2)

[From some preliminary calculations, (6. 1) appears
more likely than (6. 2).]

APPENDIX A

Equations (3. 1) and (3.2) are most easily solved by

first rewriting them in spin-coefficient notation (Sec. 2).

This is accomplished by substituting
(4 = Al4 + Bl# + Cm# + Cm# (A1)

and taking tetrad components of (3. 1) and (3. 2). The
resulting equations are

DB =0, (A2)

DA+ AB=(y +7)B+ 1C + 7C, (A3)

8B —DC=7B+ oC + pC, (A4)

AA = — (y +3)A ~ 8C — vC + O(1), (A5)
6A— AC=—27A + VB—XC — (p + v — )C + O(1),

(A8)

8C = 0cA—AXB+ (B —a)C + O(r-1), (A7)

5C + 6C = 20A — (u+ H)B + (& — B)C + (o — B)C
+ O(r-2). (A8)

The powers of -1 in the order symbols are chosen by
realizing (not obviously) that if higher powers are
chosen, the equations will in general have no solutions.
(Other justifications are given in Refs.5 and 6.)

Using the known spin-coefficients (Sec, 110), (A2), (A3),
and (A4) can be integrated immediately for the » depen-
dence of A, B, and C. The remaining equations then
vield relations between the coefficients. These results
are summarized in Egs. (3. 3)-(3.9).
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Normalized tensor operators for a finite group G are defined by means of coefficients U which formalize the descent in
symmetry from ® 3 to G. The properties of these coefficients are demonstrated and tables given. Some examples of applica-

tion show their use and utility.

Whereas in spherical symmetry irreducible tensor op-
erators are defined by means of their commutation re-
lations with angular momentum operators, for finite
symmetry groups they are characterized by their trans-
formation properties,i.e.,by the irreducible represen-
tation and component to which they belong. Both defini-
tions are of course equivalent;but they are not always
handled in the same form. This introduces a disconti-
nuity between the formalisms of atomic spectroscopy
and crystal field theory. It is the purpose of the present
paper to bridge this gap, by means of the formalization of
the descent in symmetry from ®,, to its finite subgroups,
especially the cubic groups.

To show how this can be done, consider a basis, | Im) of
the rep®,; of ®,. Upon descent in symmetry to the finite
groups G, D, breaks up in reps of §,and if we choose
bases | ITy) for §,we have

| Im) =IE(le\l7n)llFV>- (1)
Y

Here the symbol for the basis |IT'y) contains [ to indi-
cate that I" is contained in the decomposition of D,. We
can apply the development indicated in Eq. (1) to express
an irreducible tensor operator {kg} = C¢®), which obeys
the usual commutation relations with the angular momen-
tum operators 1,1,

[’{k(]}, lz] = q{kq}y
Qeat, 1,1 = [k(k + 1) — q(q + 1)]1/2{kq + 1}. (2)

Upon descent in symmetry from ®; to §, we may write
the equivalent to Eq.(1) for operators

{kg} :IZ, (kTy| kq){kTy}. (3)
Y

Equation (3) involves the same transformation coeffici-
ents as Eq.(1),and it may serve as a definition of the
irreducible tensor operator component {£T'y}. We have

{rTy} =27 (kglkTy){kq}. (4)
q

We shall call the {k¥T'y} a component of a G-tensor of rank
kT'. The application of the Wigner —Eckhart theorem to
the matrix elements of irreducible spherical or §-ten-
sors defines in each case a reduced matrix element

(tm | g} | 1'm) = (— )= (,g,g;g;.) IR

= (- 1)V (mg> e 117, (5)
~-mm g
I‘\I //F ,
QT {eTy} | 17Ty = v( L ><l'r W{eT} 17T
Yy v
(6)
(when real components are chosen for the repsI).

The properties of the vector coupling coefficients V are
well knownl.2; we use here the V coefficient rather than
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the 3j coefficient even for &; symmetry,to emphasize
the similarity of the expressions.

Now, as the §-tensor {£I'} is defined in terms of the
spherical tensor components, we may develop the re-
duced matrix element in Eq.(6) and write according to
a theorem of Racah3

’ "

r'r
(T ifertii ey =u o %(l’ll{k} 1) (M
This defines the coefficient U which formalizes the sym-
metry reduction from ®; to §. The reduced matrix ele-
ment on the right-hand side of Eq.(7) is exactly the
same as that in Eq. (5),and in it no reference to § is
made.

The U coefficient is a sum of products of five factors,
two coupling coefficients and three transformation co-
efficients, viz.

r,r,r — i1l r,r,r'
Uglzs I (—1)11V<123 >V<123>
( lll 213 mymomy mimqing Y1Y2Y3

Yi¥273

X (Lym [Ty ) gm ol Ty )T gmgl il aya).  (8)

It is clear from its definition that the U coefficient has
the following properties:

(a) It is invariant,as is easily proved by a coordinate
transformation,

(b) It is zero unless (1,1 ,l3) and (I';T",I'3) separately
satisfy a triangular condition, which for § means I'; X
I',D Iy,andfor Rglly —llslg <1y +1,.

(¢) It is invariant to even permutation of its columns;
both elements of a column belong together: Under odd
permutations, a factor (— 1)X*T is introduced, where L =
ly+1,+153, =T, +T, +Ty,and (— 1)T are defined
by Griffiths.1

(d) It is zero unless each I is contained in the branch-
ing of the corresponding [.

In the Appendix we give a short table of values of U for
the cubic groups.

As a simple example of application of Eq.(7) and the U
coefficient, we may generalize the theorem, due to
Abragam and Pryce? of the proportionality of the ma-
trix elements of the angular momentum operator L
within the T,, components of a d-state with those with-
in a p-state. In fact we have, since in § = 0,,L trans-
forms as T,, and is proportional to {ir,,}:

. {TogT2:T 1l
0T 5079, 1417w, 0t 12T 5,70 :Uj 5 2 1 g;

x 21} nz>v<T2gT,2ngg>,

Y2gV 22Y1g
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ATy, 1T gy 117107100

Ty, T1. T,,T
=U3 1utl 1g§<1“{1} ”1> V( lat lu 1g>’
11 7’2g72g71g
furthermore Griffiths! shows that V(f f f) V<§2§2Tl>.
Y273

Thus the proportionality constant o between the ma-
trices is given explicitly by

ngTZngg
offal €<zn{1}||z>

a =

TluTluTlg(
U} wh <1n{1}1|1>

a result which is immediately generalizable to any set
of states{l T}, for any I and T being any triply degener-
ate rep of one of the cubic groups.

DESCENT IN SYMMETRY FOR IRREDUCIBLE
PRODUCTS

An irreducible product of § tensorsisa G tensor. We
may define it by the equation

{k1Ty ® k,T, = kT
-5 ml/zv(r‘ 2 ){k Ly HEaTars), (9)

Y172 YivaY
which is analogous to the spherical case, where we have

{ky ® ky— kq}
_kiky R
o R G FOPH S L)
4,492 q919.— 4
In each case [k] = 2k + 1 is the dimension of D, in &,
and [T'] is the dimension of T in §.
If we reduce the irreducible product of Eq.(10) into a
direct sum of §-tensors using Eq.(3) and compare the

result with Eq.(9), we find the following expression for
the irreducible product of §-tensors:

{7, ® kyT, - kIy}

‘mgl/zu(elkzk ){kl 9 ky > kDY) (11)
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In the proof of Eq. (11) use is made of the orthogonality
of the V coefficients and of the following property of the
U coefficients:

—q.—[R1Rokq
o o(—1nk qu( >(k1‘11|k1r'17’1)
914544 9192 — 43

X (kzqzlkzrz)’z)

X (k3F373’k3q3)

r,r,r, kikokg
=V<1 ) v 3|
Y1Y2V3

?r r,r,)
The reciprocal of Eq.(11) gives the reduction of a sphe-
rical irreducible product in terms of irreducible pro-
ducts of G -tensors:

(12)

ey % ky = Ty}

_ Z) 3[_]6’1(1/2(]

kykyk
[ry 3

Iy ®@k,T, »kTy;. (13
l"ll“zl“g{ 1’1 @Ry, vh (13)
Equation (13) is proved by a method similar to that of
the proof of Eq. (11). The combination of both of these
equations allows us to establish the following normaliz-
ations for the U-coefficients for any set of given & k k5!

(rkahs( 2 _[Ty)
le%z UII‘1I‘2I‘3§ k3]’ (e
‘k1k2k3f2:1. (14b)
LIy ?FlPZFBS

Equation (13) is particularly useful since it admits the
immediate adaptation of mixed tensor operators for
spherical symmetry to deal with lower symmetry. We
thus consider a mixed tensor operator of rank kI',being
of spherical rank k; with respect to part 1 of the sys-
tem and %, with respect to part 2, {¢; ®k, > kI'}. Ina
clumsy but fairly obvious notatlon we take the wave-
functions [1,a(1);1,6(2): T'7,) and | I c(1);1,d(2):T7,),

N )[F] r,r,r and we calculate the matrix element
]
(1,a(1);1,6(2): Ty, {k; ® ky —» RT}ill,c(1);1,d(2): Ty
(1/2 klkz
:} 31, 2 05,0 @I Ty 0 1T = KT L2 T s)
1+ 2 “a 2
kokok) (1R ‘zzdkg\ [
v M1/ U 312 U;‘”ls b X{c dT,:
= {[#][{,] 1"12} (Lo {ky} Hl><lblr{kg}Hld>Fr rrmlaerd Clbar 'C
12 it 2 1 2 r,r.r
1t 2

Here X{ | is a 9j symbol for §,as defined by Griffiths.!
Equation (15) is useful for the description of two elec~
tron operators, or for certain vibronic interactions,
when highly degenerate vibrational modes are described
by means of angular momentum eigenfunctions4-6

which couple to the electronic angular momentum.

The property of invariance of the U coefficients can be
used to obtain expressions for wavefunctions of higher
L values in unusual coordinate systems, when those of

low L values are known or can be obtained by direct me-
thods. The formula which will accomplish this expresses
one of the transformation coefficients (#I'y|kq) in terms

of two other transformation coefficients,two V's and one

U. It is,in fact, easy to prove the following equation:

kikoka 'l
(k3I‘3y3|k3q3):[I‘3]U§ t2 3%

LR AP
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R
4,92 q9142 — 4
Y172

[Tl

X V( >(k1qllklrl'}’l)(kzqzlkzrz')/z)- (16)
Y1Y27Y3

It is to be noted that in case complex functions are de-

Y17273
pertinent equations in this paper should be replaced by

[— 1]F3+73 V<F1r2 F3> 1

Y1¥2™ Y3

sired or used, V<r1r2r3> in Eq.(16) as well as in all other

Example: §-tensorial expression of spin—spin coup-
ling: Judd? gives the following expression for the spin—
spin coupling Hamiltonian in spherical symmetry
((2k + 5)!)1/2

Vss = 2u (—1)* 2!

kq
&
7
X k+3
¥2

k
" — ()l @ e + 2}, - 2} {5, ®5, - z}>), an

(e + 2}, ® {r}, > {2} 1 {S, ®S,~ 2}

where the vertical bar indicates a scalar product of ten-
sor operators. We have

({e} | {£}) = ? (= 1)a {rq}{k — q}.

This scalar product can be expressed in terms of our
G -tensors, and we have

(e} e} ) = 2 eryHery} = 20 deTH T,

The scalar product between the second rank tensors de-
composes thus into a T',, part and an Eg part, corres-
ponding to O, symmetry.

(18)

To make our example precise, suppose we wish to cal-
culate the matrix element of Vg4 between the ground
state 64, and a charge transfer state 6T, of a 3d5-
system in cubic symmetry. This limits the sum in Eq.
(16) to just the T’ = T, term. Since in Eq.(16) k = 2 for
Vg, the matrix element reduces to bielectronic matrix
elements between two-electron triplet functions only.
This severely limits the extension of the fractional pa-
rentage expressions necessary to express the states.
We have, for the spin part of (64, | V¢l 6T,), in the nota-
tion of Eq.(13)

(it e 127} 150)
= <(%%)1T'1\| {1e1- 2T2H(%%)1T;>

_ UBI;IIT;U;% <(gg)1u [1o1 -2} (%%)1>

331
_ATiTiT, 11 <_ %z_ﬁ .
"Uz1 122‘/—‘E 12112 g2 =5,  19)

where use has been made of Egs.(13) and (7) and the
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standard expansion of the 2-electron “spherical” ma-
trix element? in terms of a 9j symbol. Here T} = T,,
in 0, and T, in T, symmetry.

For the orbital part, we first observe that, in general, if
molecular orbitals are used,there is a “local” part of
the orbital matrix element,in which all four atomic func-
tions are centered at the same atom, and a nonlocal
part? which is not @ priori negligible,but which can be
reduced to a sum over one-center functionals by means
of the alpha-function development of Lowdin.8 2 Once
this reduction is made, we can apply directly Eq.(15)
which leads us to the expressions found in atomic spec-
troscopy, and which can be expressed by means of a
generalization of the radial integrals introduced by
Horie,10

o y2dy

T £ 00 0) [ e £, )

MHabed) = | 3
(20)

7

APPENDIX A: VALUES OF U {{ ¥+ } FOR /,/,/, < 4

AND/, =6,/, =/; =3. GROUPSOOR T,

The table gives U2 in “prime factors” notation.11 Suc-
cessive figures are the exponents of 2,3,5--- in the de-
composition of U2 in prime factors, a negative exponent
is underlined. An asterisk indicates that the negative
square root should be taken (*). O means U = 0. T} =
T,(0) or T,(T,;). When one ! = 0,we have

1170} /[T)I/2
Urrad = () tertu
ITA,)  \[1]

111
; $ =1 evidently.

TyTyT
APPENDIX B: PROOF OF EQ. (7)

In terms of the definition of the basis functions |/T%) and
of the §-tensors{#T'y}[Eqs.(1) and (3)] we may write the
matrix element of a §-tensor component:

<l’rl’}/’l {kr,y}| "T "')’”>

Z; (l'F’y’Il’m')(kI‘ylkq)(l"l"”y”|l”m")

m'm”q

X <l1mr|{kq}| 1" m?"”

I

Il

27 Ty | U'm)(kTy | kg)@" Ty | 1"m ") (= 1)1

2
11"k , "

v (_m,m,,q> QR .

Via ('T' [ 1'm") = @'m'\U'Ty/)* = ( )m (@ — m|1'Ty")

(valid for the real component systems for the reps of g),
we have

(B1)

’ ’ T pps 2l A AN 74 l,l”k
@ — m' U Ty kg | kTy)C"m” 17Ty )V(—m’m”q>

m'm'’q
X (— 1) eIz

tan 700,17 AR YL VAN T2 l'l”k
= M%q I'm’ | 1'T 'y Mg RTy) (I "m” | 1"T"y )V<m’m"q>

x (— 1)V eI,

We may compare this expression with Eq. (6) of the text.
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TABLE.

Il T,T,T'y U2 11,1, T, T,r, U2 I 1,13 T,y U? I 1l IyT,T; U2

211 7T,737] 011 422 AEE 011 433 T,TT, 20011 443 T,T,T, 0111,1
211 E TT} 101 422 E T,T, 3201 433 T,T,T, *011L1 444 AJAJA 1302,11
221 T,T,T; 7001 422 EEE 1101 433 T,T,A, 1110,1 444 AEE ,2300,11
221 E T,T; 101 422 T,T,T, ‘2101 433 T,T A, *1601,1 444 AT, T, *1202,11
222 T,T,7, 0211 422 T,ET, *i001 441 AT, T; 02 444 A T,T, 1200,11
222 TyT,E *1111 422 T.T,T, 0 441 E T,T; ‘0211 444 EEE 9311,11
222 EEE 3011 422 T,T,E 11 441 E T,7; *011 444 E T,T, 321311
321 A,T,T; 70001 431 A T,T; "02 441 T,7,7) 311 444 £ T,7, 321111
321 TE'T; 0211 431 E T,T] 0001 441 717,77 3111 444 E T,T, 1110,11
321 T,E T 0001 431 E T,T, *0211 442 AEE 3100,1 444 T,T\T, 0
321 T,T,T) 1111 431 T,7,7; *311 442 A,T,T, 0100,1 444 1,77, 4111,11
321 T,T,T 1001 431 T1T,T) 3 442 EEE *6211,1 444 TT,T, *8310,11
322 ALE'E 0001 431 T,A,T, 0001 442 E T,T, 0111,1 444 T,T,T, 0111,11
322 T,T,T, *2111 431 T,T,T, *3111 442 E T,T, 0010,1 633 A;A,A, *3101,11
322 T,T,T, 0 431 T,T,T; *3201 442 T,T,T, *3011,1 633 A T,T,  1021,11
322 TET, *i111 432 A/T,T, *02 442 T,T,T, *3012,1 633 A T,7, *1401,11
322 THET *1101 432 ET\T, 0001 442 T,T,T, 2111,1 633 A,T|T, 1000,01
8331 A,T,7; 0001 432 B T,T, 0211 442 T, T,E  2111,1 833 E 7,7, 1020,11
331 T,T,T} 3201 432 E A,E *3I111 442 T,T,E *4111,1 638 ET,T, 1010,11
331 T,T,T, 3001 482 1,1, T, 3 442 T,T,E 0010,1 633 E T,T, 120011
331 T,7,T; 3111 432 T1,T,T, 311 443 AT,T, 1201,1 633 T,T,T, 0
332 1,7, T, *3111 432 T, TE 0 443 AT,T, 1110,1 633 T,T,7T, 1110,11
332 T,T.E 2071 432 T \T,E 011 443 ET.T, ‘12121 633 T.T,T, 0
332 T,T,T, *élll 433 AT, T, *3000,1 443 ET,T, 1000,1 633 Ty TyA, 0200,11
332 T,T,E 0 433 A T,T, 1200,1 443 E T,T, ™"1111,1 633 aT,T,T, 6110,11
332 T1,7,T, ‘3001 433 AjAA, *1100,1 443 ET,T, *1101,1 633 aT,T,T, *6000,11
332 T|T,E 0001 433 ET,T, 1011,1 443 EEA, *0201,1 633 al,T,T, *6112,11
333 A,T, T, 1001 433 ET,T, *1001,1 443 T, 7\ T, 0111,1 633 aT,TiA, 3000,11
338 71,7,7, 0001 433 E 7,7, "1211,1 443 T,7,T, 0 633 bT,T,T, 6120,01
333 1,77, 0 433 T\, 7 0 443 T,T,T, "2110,1 633 bT,T,T, '6210,01
333 T, T,T, 0001 433 T1,T,T, 0000,1 443 T, T, T, 00001 633 bT,T,T, 6300,01
333 T,T,T, 0 433 r1,T,T, *0110,1 443 T,T,A, *1000,1 633 bT,T;4, 0
422 A T,T, "121 433 T,7,7, T0111,1 443 T,T,T, '4001,1

* For example: U

33 1) _+(3x5>1/2
T\TpTyf ~ 7 \28x7/ -

We equate the right-hand sides of Egs. (B1) and (6),

oo
multiply both sides by V(I;ryny) and sum over y’,y”, and

v, using the orthonormality relations for the V coeffi-
cients.1 This yields Eq. 7 when the U are defined as in
Eq. 8.
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Analyticity of solutions in a parameter, explored numerically
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Solutions of the Ball Zachariasen equation, discussed in two previous papers, depend analytically on a parameter ¢ which
measures the strength of particle production. Numerical experiments. designed to elucidate the structure of the Riemann
surface. are reported. The results are consistent with a very pretty hypothesis which describes the Riemann surface

completely,

1. INTRODUCTION

The existence of an infinite class of solutions of the
Ball-Zachariasen equation! was proved in Paper I of
this investigation.? These solutions exist for sufficient-
ly small values of a parameter ¢, which measures the
strength of particle production. The solutions ¢ (b, ¢)
(where ¢ is simply related to a Hankel transform of
the two-particle scattering amplitude and b is the im-
pact parameter), are analytic in ¢ inside some circle
lc| =y at each b. The radius y is limited by the tech-
nical requirements of the existence proof, in such a way
that the nearest singularity lies on a circle which is,
undoubtedly, a good deal larger than [c¢| = .

Since the values of ¢ for which the existence proof
succeeds are too small to be interesting physically, a
numerical continuation to larger values of ¢ was attempt-
ed in Paper I1.2 Some representative small ¢ solutions
were computed, and were continued along the real ¢
axis until a singularity of the Fréchet derivative of the
nonlinear Ball-Zachariasen operator was encountered.
This prevented further continuation along the real axis;
but it was possible to circumvent the singularity by the
detour into the complex ¢ plane. Upon returning to the
real axis it was found that the solutions were complex,
which suggests that the singularity of the Fréchet de-
rivative might be associated with a branch point of

¢ (b, c) regarded as a function of c.

In the present paper we reportonnumerical experiments
which were designed to explore the Riemann surface of
¢ (b, ¢) as a function of ¢. The results were consistent
with a remarkably simple hypothesis: namely, that for
each b the function ¢(b, ¢) is analytic on a two-sheeted
Riemann surface, each sheet consisting of a plane cut
along the real axis from some point ¢{b) to infinity. The
branch point ¢(b) increases monotonically with b,

As in Papers I and II, we still find no evidence that the
‘Ball-Zachariasen equation has solutions resembling
experiment. We think, however, that this work is worth
reporting for its mathematical interest, and as an un-
usual application of a computer for inductive determina-
tion of analyticity properties of a complicated equation.
Our work is incomplete in that we cannot provide an
analytic proof of our hypothesis. Nevertheless, our con-
jecture about the structure of the Riemann surface is
quite definite. It might be pursued analytically, and it
certainly can be subjected to more demanding numerical
tests.

In Sec. 2 we recall some properties of the equation, and
state carefully the analyticity properties which are
suggested by the numerical data. Section 3 is a detailed
description of the numerical work, and Sec. 4 contains
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an heuristic argument which is intended to make plaus-
ible our conjecture concerning analyticity.

2. THE RIEMANN SURFACE OF THE SOLUTION

After a Hankel transformation,! the Ball-Zachariasen
equation has the form

7)) = 72) + C;7, ¢), (2.1)
where

Clbsf,¢) = |7 dud olbxlgle)ecs ) — 1), (2.2)

gl) = f0°° bdbd ,(bx) F2(b). (2.3)

The notation is the same as in Papers I and II:2 The
elastic scattering amplitude is sf(x), where x = (— ¢)1/2
is the magnitude of momentum transfer, and s is the
squared energy. The Hankel transform of f{x) by the
zeroth-order Bessel function J,; is f(b), where b is the
impact parameter:

Fw) = j0°° dx J o(bx) flx). (2.4)
Hence g(x) is a high energy approximation to the elastic
unitarity integral. At ¢ = 0 the integral equation (2.1)
reduces to

7 ) =72(), (2.5)
which is solved by any function having values 0 or 1 only.
Among all such step functions we consider only those
having support in a finite region. An arbitrary member
of this class is denoted by /(). As was shown in Paper
1, it is convenient to write f(b) for ¢ # 0 as k(b) plus a
remainder, as follows:

(o) = h(b) + [1 — 21(b)]o (b). (2.6)
The advantage of this change of variable is that ¢(b)
satisfies an integral equation which has a unique non-
trivial solution in the subset K of a certain Banach space
B for each h, provided that ¢ is sufficiently small. The
function ¢ is comfinuous, and it vanishes uniformly as

¢ goes to zero, so that k(b) is the limiting form of f(b).
The continuity of ¢(b) simplifies the proof of the exis-
tence theorem (Paper I) and eases numerical solution

of the equation.

To find the equation for ¢(b), we note the identities

F—72=0¢—02 (p—n2=7r2 (2.7)
Thus
$(d) = ¢2(b) + Blb; ¢, 0), (2.8)



SOLUTIONS OF A NONLINEAR INTEGRAL EQUATION

where

Bib; ¢, ¢ (2.9)

= fooo x dx J o{bx) glx)(ec&(0) — 1),

gl) = j:" b db J o(bx){R(B)[1 — 26(B)] + 62(0)}.  (2.10)
Our numerical calculations are based on Eq. (2.8) with
a specific choice of k(b); namely,

1, b<w,

(2.11)
0, b>r.

) =6r —b) =

Because of the scaling property of the equation explained
in Paper I, the value of the radius » that one chooses is
immaterial. As in Paper II, we put » = 1.41 (GeV)"1, and
measure x in units of GeV. The restriction to the simple
step function (2. 11) seemed unduly narrow in the work
of Paper II. In the present report we shall find that in-
finitely many other solutions can be reached by continua-
tion in ¢ of ¢(b;c), where one starts with the ¢ corres-
ponding to (2. 11) at small c. These solutions correspond
to various step functions for f (6) in the limit ¢ = 0. This
comes about by ¢(b; ¢) developing discontinuities in b

as ¢ passes through branch points, so that if ¢ =0 is
reached by following an appropriate complex path,
lim,_ o6 (b, c) is itself a step function.

We note an alternative way of introducing the step func-
tions explicity. If Eq.(2.1) is solved forf in terms of
C, we can write

~

Fio) = {1~ s)[1 — 4C; 7, ¢

where S(b) is any function with values + 1 almost every-
where (at points where S changes sign, a_set of measure
zero, it need not be defined). Since C(b; ;7,0) =0, a solu-
tion of (2.12) with an arbitrary S will be a solutlon of
(2.1) having the arbitrary step function $[1 — S{(5)] as

its ¢ = 0 limit. It will not be necessary to solve or
analyze Eq.(2.12), since our discussion in terms of ¢
will also yield arbitrary step functions at ¢ = 0.

)12}, (2.12)

We shall be interested, however, in a similar equation
for ¢, which is obtained by solving (2.8). In this case,
we put the arbitrary step function in front of the square
root equal to 1, and obtain

- 1~

The unique solution of (2. 8) in the subspace K at small
¢ is continuous in b, real, positive, and less than 3. Con-
sequently, it is represented by (2. 13) with the square
root defined to be positive.

[1—4B(b; ¢, )] /2}. (2.13)

The numerical solution we begin with at small ¢ has the
representation (2. 13}, Furthermore, our numerical re-
sults are consistent with the following hypotheses about
the solutions obtained by continuation in ¢ of this solu-
tion [the continuation being performed by solving (2. 8)
at successive values of c]:

(i) B(b;é(-, c), ¢} is an entire function of ¢ for each b.

(ii) For any & (except those in a set of measure zero)
the solution ¢ (b, ¢) is given by formula (2. 13) along any
complex ¢ path which starts at ¢ = 0. At ¢ =0, the
square root is defined to be 1, and at subsequent points
on the path its value is determined by analytic continua-
tion,

The analyticity of B in ¢ implies that the only singulari-

ties of ¢ (b, ¢) in the finite plane, where ¢ is regarded as
a function of ¢ at fixed b, arise from zeros of 1 — 45 in
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(2.13). The numerical results suggest that there is
just one such zero at ¢ = ¢(b) on the positive real axis,
with c(b) being a monotonically increasing function of 4.
In that case, ¢{b, c) has only a simple square-root
branch point, with the associated two—~sheeted Riemann
surface, Because of the dependence of the branch point
on b, this simple structure can result in a very com-
plicated & dependence of ¢(b, c) after the path in the ¢
plane has passed through branch cuts several times.
This structure arises because as b is varied, with ¢
fixed at the end of the continuation path, the value of the
square root in Eq.(2.13) may come from first one and
then the other of its two Riemann sheets, This gives
discontinuities in &, and at such discontinuities ¢(b, ¢)
is undefined. The set of measure zero mentioned in
hypothesis (ii) is just the set of points of discontinuity.
At such points, ¢(b, ¢) is easily defined by continuity
from the right or left, and with that definition it is
analytic in c.

Since the calculations were restricted to a small part

of the Riemann surface, the evidence in favor of hypo-
theses (i) and (ii) is not overwhelming. One could easily
weaken the hypotheses without contradicting the numeri-
cal data. For instance, in place of (i) we could assume
analyticity in a sufficiently large finite region of the ¢
plane. In Sec.4 we shall give an argument for plausi-
bility of (i) or a weakened form thereof. A real proof
appears to be quite difficult.

3. NUMERICAL EVIDENCE

Equation (2. 8), which we write as F = ¢ — ¢2 — B =0,
is solved by the Newton—Kantorovich (NK) method3-2
in the modified form3 in which the Fréchet derivative
F¢ is computed just once, at the beginning of the sequence.
In Paper II we used the result of a successful NK itera-
tion with an altered value of ¢. We have now improved
the program by making a linear extrapolation in c¢ to
obtain the starting point for the new sequence of appro-
ximations. That is, if ¢(b, ¢) is our approximation for
the limit of an NK sequence, the next sequence is begun
with

dolb, c + ac) =

olb, ) + %ﬁg(b, c)Ac, (3.1)

where 8¢/3c is obtained by solving the linear equation

kel _
Foz ¥ E. =0, (3.2)
F=¢—¢2— (3.3)

This procedure reduced the number of steps Ac required
to move a given distance in ¢ by a factor of five or so

on the average. As in Paper I, automatic adjustment of
Ac was employed: If the sequence failed to converge,

Ac was reduced to aAc, @ < 1,and a new sequence was
generated with the result of the last successful iteration
as starting point. In the present calculations the limit

on relative errors was € = 0.01 [see Eq. (2. 6)ff, Paper
1I].

In Paper II we found the first singularity of the Fréchet
derivative {in a continuation from ¢ = 0 along the posi-
tive ¢ axis) at ¢ = ¢, = 0.5535, Aswas noted previously,?2
this is the first value of ¢ for which 1 — 2¢ has a zero,
and for which the Fréchet derivative F, becomes an in-
tegral operator of the third kind.? Equivalently, it is the
first ¢ where 1 — 45 has a zero. The zero of 1 — 2¢

and 1 — 4B occurs at b = 0, so according to hypotheses

J. Math, Phys., Vol. 13, No, 12, December 1972



1898 G. R. BART AND R. L, WARNOCK

(i) and (ii) of the previous section, ¢(0, ¢) should have a

square-root branch point at ¢ = ¢g. Cam 0.484
3= 0.

The continuation by NK iteration came to a halt at ¢ = ¢,
in the sense that the allowed step Ac converged to zero
as ¢, was approached. In order to bypass the difficuit
point, an excursion into the complex ¢ plane was made.

In Paper II, various points on the real c axis to the right
of ¢, were reached via paths passing through the upper Ok
half plane. Since the solutions were complex for ¢ > ¢, ) | | 1

N W s oo N
|

a branch point at ¢ = ¢, was suggested. 0 0.5 1.0 1.5 2.0 2.5

To investigate the alleged branch point, we now follow
paths which encircle ¢y. The first such path is shown
in Fig. 1. The point ¢, was reached in our previous

calculations. The corresponding solution is plotted in
Fig. 2. Note that we have left gaps in the curves near

FIG. 4.

the breaks in slope. In the gaps we have no evaluations B
of the functions, because of the limited number of mesh
points in the calculation. We continue into the lower
half-plane to cy, through the supposed cut. A discontin-
uity of Re¢ seems to develop as soon as one passes
into the lower half-plane. This is illustrated in Fig.3,
where ¢ is plotted for ¢ = ¢5. The apparent discontin-
uity of Re¢ in Fig.3 occurs at the value of b where the
break of Re¢ is located in Fig.1. This discontinuity
persists when we return to the real axis at ¢z < c¢g, as
is seen in Fig. 4. The solution is now real to high B
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FIG.1: Paths for analytic continuation of solution in
complex ¢ plane, beginning with solution computed in Paper 1.
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FIGS. 2-7: Real parts (solid line) and imaginary parts (dashed line) of solutions at the points ¢, through ¢, of Fig.1.
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We proceed toward the origin on the real axis and find
that the solution tends toward a step function, which
equals one for b < b; ~ 0.3 and zero for & > b, (see
Fig.5). By referring to Eq. (2. 5), we see that the corres-
ponding 7(b), in the limit ¢ = 0, is as follows:

50, 0 <b<by,
f) =<1, b, <b<7,

(3.4)
'\0, vy <b<w,

Since 7(b), in the limit ¢ = 0, must be a function with
values 0 or 1 only, it was inevitable that we obtain some
sort of step function in the limit. The result (3.4) is to
be compared with f(d) = 8(r — b), our original solution
at ¢ = 0 on the “first sheet.” The value of b, in (3.4)
depends on the point ¢, at which the real ¢ axis was
crossed.

Next we go from c; through ¢4 to ¢,, which is nearly
equal to ¢;. A comparison of Fig. 2 with Fig. 7 shows
that the solutions for c¢; and ¢, are complex conjugates
to an excellent approximation,

These results may be understood in terms of hypotheses
(i) and (ii) of Sec. 2. To the largest values of ¢ on the
positive real axis that we have reached, B increases
monotonically with ¢ at each b, At each ¢ > 0, b de-
creases monotonically with 4. Let us assume that these
monotonic behaviors persist to arbitrarily large values
of ¢ on the real axis. For ¢ > c,, we then have a unique
zero of 1 — 4B as a function of & at a point b{c) > 0,
since B > 3 at small . For b > 0 there is a unique real
zero of 1 — 4B as a function of ¢, at a point ¢(b) = Coe
There could also be complex zeros of 1 — 4B as a func-
tion of ¢. There is no numerical evidence for complex
zeros, however, so we shall assume that there are none.
Now consider our initial solutions of Eq. (2. 8), obtained
by iteration for real ¢ < ¢,. These solve Eq.(2.13),
where (1 — 4B)1/2 ig defined to be positive for all . If
Bl(b; ¢(+, ¢), ¢) is entire in ¢ [Hypothesis (i)], then analy-
tic continuation in ¢ of the square root on its first
Riemann sheet yields

i — 1/2
3 (1= 45, 7))

_{1[1 — 4B(b, ¢ + 0)]1/2],
B d|[1 - 4B(b, ¢ £ 10)]1/2],

c < cld),

c > clb), (3.5)

where we use the abbreviated notation
B(b,c) = Blb; (-, c), c).

Since Eq.(3.5) holds for any &,and ¢ $ c¢(b) implies
b $b(c), it follows that
lim  [1 — 4B(b,)]Y/2

y=>c1i0

b <blc),

3 {* i[[1 — 4B(b, ¢ £ i0)]1/2],
- b > blc).

I[1 — 4B, ¢ + i0)]1/2], (3.6)
Equations (3. 5) and (3. 6) hold when y is on the first
Riemann sheet. On the second sheet, of course, the
signs of the right-hand sides of the equations are to be
changed. In the following, it will be convenient to give
the symbol [1 — 4B(b, c)]1/2 an invariant meaning, so
that its value depends only on the values of  and ¢, and
not on the sheet in which ¢ is located. Throughout its
Riemann surface, the square root can then be written
(in terms of its principal branch) as
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S(b, T)[1 — 4B(b, c)]1/2, (3.7
where (1 — 4B)1/2 jg defined so that it satisfies (3. 5)
and (3.6),and S(b, ') is a step function with values = 1
as a function of b. The argument I' denotes the path in
the Riemann surface by which the point ¢ of interest is
reached. Since the branch point ¢(p) depends on b,S in
(3.7) can be + 1 for certain intervals of b, and — 1 for
other intervals.

The qualitative behavior of all our curves follows from
(3.5),(3.6), and the formula

6b,c) =1{1 — 80, T)[1 —4Bb, c)]1/2}, (3.8)

Consider first ¢ (b, ¢,), graphed in Fig. 2, with I" being
the path shown in Fig. 1. Since Im¢ = 0 for b > b, = 0.3,
we conclude from (3. 6) that bl(c,) = b, and S, T)
€lb —b,), where

[

-1, x<0
1, x>0

Then (3. 8) and (3.6) imply Im¢ > 0 and Re¢p = § for

b < b, and 0 < Rep < § for b > by, all of which agrees
with the data except for a 2% discrepancy in Re¢ = 3.
(The 2% discrepancy here, and slightly bigger disagree-
ments elsewhere, may reasonably be ascribed to numeri-
cal error. The computer program was not designed to
handle the Hankel transforms of discontinuous functions
which arise. We are surprised that the program works
as well as it does in such a difficult situation.) When

the path of continuation passes downward through the
real axis at ¢ = ¢, we are passing onto the second

sheet of ¢(b, ¢) if b < b(c,), since for such b we have

¢y > c(b). We remain on the first sheet of ¢(b,c) for

b > blc,), since then ¢, < ¢(b). This explains the appa-
rent discontinuities in the curves at ¢ = ¢,, Fig. 3, which
are now to be interpreted as genuine discontinuities.

For b < b(c,) in Fig. 3, one is seeing second-sheet values,
while for b > b(c,} one sees first-sheet values. In
passing from c, to ¢,, B has remained predominantly
real, and ReB has decreased.

elx) =

When the real axis is regained at ¢ = c¢5, Fig. 4, the
solution is real to very high accuracy. We still have
S(b,T) = elb — b,). Since c3 < ¢y, this is expected if

¢(b,c*) = ¢, )%, 3.9

where ¢ and ¢* are both on a given cut plane, with cut
[cg, ©). The reality property (3.9) is in fact easily es-
tablished by noting that ¢(b, c*) and ¢(b, ¢)* both satisfy
the equation

¢ =¢2 + Bl o, c*). (3.10)
For ¢ inside a small circle about the origin, (3. 10) has
a unique solution in the space K described in Paper I.
Hence (3. 9) holds for ¢ near the origin and, hence, every-
where on the cut plane. The reality of ¢(b, c5), b < blcy),
is achieved by 4B becoming less than 1, whereas it was
greater than 1 in this region of b at ¢ = ¢,. As we pass
from cj to ¢4 and ¢4 (Fig. 5), B continues to decrease.
That is expected, since B = 0 at ¢ = 0. At c; = 0.0889,
we have a function which nicely resembles the step func-
tion which one should have at ¢ = 0.

At ¢4 and c¢,, we have nearly the complex conjugates of
the functions at ¢, and ¢,, respectively. This agrees
with (3, 9), to the extent that ¢, = ¢g*, ¢; = ¢;*. (One
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would have liked ¢, = ¢g*, ¢, = ¢,*, but that was awk-
ward to achieve, because of the automatic decrementing
of Ac when sequences failed to converge).

Note that the definition
(b(b(c 1); C) =

lim
br=b(c >0

b, c), (3.11)

mentioned in Sec. 2, makes ¢{b(c,), ¢} an analytic function
of ¢, which at any particular ¢ is on the same sheet

(first or second) as ¢ (b, ¢), where b(c,) — € < b < blcy)
for some ¢ > 0. If instead the limit b’ — b(c,} + 0 were
adopted, the function at any ¢ would be on the same

sheet as ¢(b, c), with blc,) < b < blc,) + €.

As a function of b, ¢{b, ¢) retains a “memory” of the
point at which the path of continuation I' crosses the
line ¢, < ¢ < «;this is indicated by the factor S(b, T')
in (3.8). The phenomenon has a simple explanation in
terms of hypotheses (i) and (ii), as we have seen;but it
leads to the amusing possibility of multiple b discon-
tinuities of ¢(b, ¢) after several loops around ¢, pro-
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FIG.8: Paths for analytic continuation of solution in
complex ¢ plane, beginning with solution at ¢, in Fig. 1.
.6
. T T I l T
S Cg= 0.605
4 =
3 —
2 —
I -
0
=l .7 —
2 —
] - | _ L |
0.5 1.0 1.5 2.0 2.5 3.0
¥IG. 9.
6 T T T | T
Sp— — N
Cg=0.84496
A —
3 —
20 |
N
= AN _
A\
0
1= _
-2 ]
L~
1 1 L 1 |
0.5 1.0 1.5 2.0 2.5 3.0
FIG. 10.

R. L. WARNOCK

vided the real axis is crossed at different points

¢ > ¢, on different loops. We illustrate this by the
additional continuations shown in Fig. 8. We pass from
our previous point ¢g to a point ¢g < ¢; and also to

cq > 4. At ¢y (Fig. 9), the function is on the upper

side of the second sheet cut for 0 < b < b(cg) = 0.13,to
the left of the cut onthe second sheet for b(cg) < b < blc;),
and to the left of the cut on the first sheet for b > b(c,).
Thus, in Eq.(3.8) one has S(b,T) = (b — b;)e(b — by),
where b; = b(c,). This accounts for the discontinuities
of Reg at b = blcg) and b = b(c,), and for the vanishing
of Im¢ for b > blcg). At ¢g (Fig.10), ¢ is evaluated on
the upper side of the second sheet cut for 0 < b < b(cl),
on the upper side of the first sheet cut for

blcq) < b < bleg) = 0.53,and to the left of the cut on the
first sheet for b > b(cy). Thus, we get the change in
sign of Im¢ at b = b(c,), etc. When the solution is con-
tinued from cq to ¢,y and ¢4, (Figs.11 and 12), we see
another step function developing. Passing from c;, to
¢ = 0 would give a step function with support in the re-
gion b(c,) < b < blcy). According to Eq.(2.5), this
means a f (b, 0) as follows:

g 1, 0<b<bley),

~ 0, bley) <bd<bley),

0) =¢

/6,0 ’1, bleg) < b <7, (8.12)

0, r<b<ow,

It is now clear that by appropriate loops around ¢, one
can produce arbitrary step functions for (b, 0).

4. REMARKS ON ANALYTICITY OF B

We have seen that the numerical results agree nicely
with the hypothesis that B(b; ¢ (", c), ¢) is an entire func-

-7 /77 T T T mi

i C10=0.635 _
.5 - _ -
4

3k 8
.2r -
= _
0
Ny |

_//
w2 ﬁ
1 | | L i J
0 0.5 1.0 1.5 2.0 2.5 30
FIG. 11,
8
T T T T T

Ndnl

e €,=0.425 ]
5 —
4 -
3P ~
2 =
4 \\ B

| 1 | 1

0.5 1.0 1.5 2.0 2.5 3.0
FIG. 12,

FIGS. 9-12: Real parts (solid line) and imaginary parts (dashed line) of solutions at the points cg through ¢, of Fig. 8.
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tion of ¢, or is at least analytic in a region including that
we have explored. In order to see hueristically how this
might come about, we can examine the Cauchy-Riemann
equations for B, Let ¢ = x + ¢y, and note that since

B = ¢ — ¢2,we have

3B _

a¢ 3¢
s = (1—29)2% =B, == + B, 4.1)
% 2¢)a¢’ B, _‘B +iB,, (4.2)

where B denotes the Fréchet derivative of B with re-
spect to ¢, and B is the derivative of B with respect
to its explicit x dependence. In (4.2) we have used the
obvious relation B, = iB,. The expression for the inte-
gral operator B¢ is as follows:

B, x(b) = j(')°° K(b,b'; ¢, c)x(b")b’ db’,

Kb, b';0,c) =2 ‘/(:O x dx Jo (bx )Wy (b'x)

X {1 — e %1 + cglx }[h ®1]. 4.3)
Equation (4.1) and (4. 2) may be regarded as integral
equations for 8¢/ax and 9¢/dy, the two equations differ-
ing only by a factor of i in the inhomogeneous terms.
When the operator M = (1 — 2¢)1 — B, defined on some
appropriate space S, has an inverse on S we have solu-
tions of the equations such that

_(2_2%

2y e (4.4)

If Eq.(4.4) holds at ¢ = ¢, and if (1 — 2¢)8¢/2x and
(1— 2¢>)a¢/8y are continuous in x and y in a neighbor-
hood of ¢, then by (4, 1) and (4. 2) we see that B is analy-
tic at c. ThlS follows from the Cauchy—-Riemann condi-
tion

9B _ .0B
B (4.5)

and the continuity of 9B/ax and 3B/3y in x and y near c.

It is reasonable to suppose that M has an inverse, yield-
ing solutions of (4. 1) and (4. 2) with the properties men-
tioned above, in the entire ¢ plane minus a set of mea-
sure zero. The inverse can fail to exist at values of ¢
for which 1 — 2¢ = 0 at some b. Then M is an integral
operator of the third kind.% 2 In general, third-kind
operators have no inverse on a space of continuous or
piece-wise continuous functions. Suppose that 1 — 2¢ is
initially free of zeros, but that ¢ approaches a value cx«
for which it acquires a zero. Then 3¢/0x and d¢/3y
might acquire singularities, but the Cauchy~Riemann
conditions for B at ¢4 might be preserved by virtue of
the fortunate factor 1 — 2¢ in (4. 1) and (4. 2). If 3¢/0x
and 9¢/9y become infinite only at values of the pair

(b, ¢) for which 1 — 2¢ = 0, then it is possible for 3B/dx
and 3B/3y to be well behaved at c,.

If we assume the result we would like to prove, that B

is analytic in ¢, we can see that this picture works out

consistently. Since 1 — 2¢ = 0 is equivalent to B = §,

we have from Eq. (3. 8) that

1—2¢bg,c) ={1—-4Bbg,c)]1/2 ~ alby)lc — cx)1/2,
(4.6)

3 alb,)
%(bo, c)~— 40 (¢ — cx)V2, (4.7)
d (b
%(bo, c)~—i ¢ 40)(c — cx)172, (4.8)

as ¢ approaches c4. Hence, the factor 1 — 2¢{b,, c)
cancels the singularities of the derivatives as it should,
and the Cauchy—Riemann conditions for B are main-
tained.

If the operator M is singular on a space of continuous
functions, it still could be nonsingular on some bigger
space, which might include functions with just the pro-
perties we need to satisfy the Cauchy—-Riemann condi-
tions on B. To see how this might happen, suppose we
first try to find the behavior of 1 — 2¢ as a function of

b near its zero. For this purpose it is reasonable to
assume that B(b; cx) has a continuous first derivative

in b near the point b(cx) at which B(b; ¢cx) = 5. This
assumption is in accord with the data; in fact, B seems
to be a perfectly smooth, monotonic function of b at all
c. Since our functions ¢(b; ¢) seem to have the same
asymptotic behavior in & as the small ¢ solutions of
Paper I, this can be attributed to the good convergence
of the integral which defines B, In Paper I, this good
convergence made 9B/3b continuous at all b. For b
near b, = b(cx), we then find from Egq. (4. 5) and Taylor's
theorem for B that 1 — 2¢ behaves as (b — by)2/2. Since
0B/3x is supposed to be bounded, we then expect from
Eq. (4. 1) that 3¢ /2x will behave as (b — b,)-1/2 near

b — b,. Now make the following changes of variable in
the mtegral equation for 9¢/ax:

x(0) = [1 — 2¢(b)]1/2 9910 a(b)' (4.9)

x
The equation for y is
xb) = [“ Kb,6%50, )30’ b’ + Bb;,c),  (4.10)
where
Rb,b";¢,c) = K(b’b/,;(p’c) , 4.11)
[1— 2¢(b)J1/2[1 — 2¢(b’)]1/2
~ B (b;¢,c)
B b;¢,c) = — (4.12)

[1- 26@)172

Since 1 — 2¢ vanishes as (b — b,)1/2, the functions K
and § will be square- 1ntegrable near b,b’ = b,. Let
us suppose that they are also square- mtegmble at in-
finity (without trying to justify the assumption for now).
Then we can apply L2 Fredholm theory to (4.10). Barr-
ing unit eigenvalues of the kernel, we have a unique L2
solution y. This solution behaves as (b — b)) ~1/¢ near

b = b, as one can see by applying Schwarz's inequality
to the integral in Eq. (4.10). The expected behavior of
(b — by)-1/2 for 3¢/3x then follows from (4.9). By a
simple modification of the equation, we have succeeded
in accommodating functions which lie outside the space of
continuous (hence bounded) functions. Unfortunately,
this discussion does not throw any light on the behavior
of the solution as a function of ¢ near ¢ = ¢4; that is, it
does not help one establish Equations (4. 6)—(4. 8).

We found that it was possible to continue through the
real ¢ axis for ¢ > c¢g, but impossible to pass through
the point ¢ = ¢, regardless of the direction of approach

J. Math, Phys., Vol. 13, No. 12, December 1972



1902

to ¢g. The reason for this appears to be that 1 — 2¢(b, ¢;)
vanishes as b — b, when b tends to b, while 1 — 2¢(b, ¢)
vanishes only as (& — b,)1/2 when ¢ > ¢,. Thus, the
equation is equivalent to a regular Fredholm equation

in L2 for ¢ > ¢y [namely, Eq.(4. 10)], but is singular even
in L2 for ¢ = ¢y. The hypothesized linear zero of 1 —

2¢ (b, c,) is fully consistent with the graph of ¢(b, c,)
given in Fig.1 of Paper II, and it means that B(b, co) has
vanishing slope at b = b,. For ¢> ¢, B(b, c) does not
have zero slope at the point b(c) where 1 — 2¢ vanishes.

In addition to the singularities of the operator M arising
from zeros of 1 — 2¢, there could be ordinary Fredholm-
type singularities of M. That is, (1 — 2(;5)-1B¢> could

G. R. BART AND R. L. WARNOCK

have unit eigenvalues at isolated points in the ¢ plane.
Such points might give singularities of B as a function
of c;but there is no hint of such in the small region of
the ¢ plane that we have investigated numerically.
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The solution to the problem of a scalar wave scattered from a rough surface is given under the conditions that the normal
derivative of the field vanish at the surface and that the surface height be a single-valued function with Gaussian statistics.
The solution is in terms of a series with a diagram representation. Partial summation of the series in terms of linear integral

equations is briefly discussed.

I. INTRODUCTION

The problem of scalar waves scattering from a station-
ary randomly rough surface which averages to a plane
is one of continuing interest from both theoretical and
experimental points of view. It represents a realistic
acoustical situation and, at least qualitatively,is rele-
vant to the electromagnetic case. The usual and sim-
plest approach is to calculate the scattered field in the
Kirchhoff approximation and then calculate moments of
fields using assumed surface statistics.l:2 Clearly
this procedure does not work for very rough surfaces.
As a first step in a general attack on the problem of
rough surface scattering,it is desirable to have a
method which permits a systematic examination of the
problem so that it is possible to say something about
the errors committed when various approximations are
made. In keeping with this goal we have constructed a
solution in terms of a series expansion for moments of
the Green's functions or alternatively for moments of
the fields. A diagrammatic algorithm has been deve-~
loped for the construction of an arbitrary term in the
expansion analogous to those used in the study of pro-
pagation through a random medium.3 The class of sur-
faces studied here is restricted to those with a vanish-
ing normal derivative boundary condition where the
height of the surface is a single-valued function with a
mean value of zero. We also assume that spatial aver-
ages can be replaced by ensemble averages over a
multivariate Gaussian distribution of surface heights.

In Sec. II, starting with the Helmholtz integral equa-
tion, a series expansion is developed for the Fourier
transform of the Green's function associated with a
representative sample of the ensemble of surfaces
under consideration. An algorithm which is appropri-
ate for subsequent ensemble averaging is then con-
structed for determining the individual terms in the
series. A reduction formula is also derived which
gives the scattered field in an asymptotic region far
enough removed from the surface so that the cutoff
surface modes can be neglected.

In Sec.III a cluster expansion is developed for the
characteristic functions associated with the ensemble
of surfaces. The properties of the moments which are
needed in the series expansion of the moments of
Green's functions are discussed using this cluster ex-
pansion. These results are then combined with the re-
sults of Sec.II to derive an algorithm for generating a
series expansion for the n-point moments of Green's
functions. The reduction formula for the mutual co-
herence function is derived and the lowest-order co~
herent and incoherent scattering terms are shown to
correspond to the Kirchhoff approximation. The series
are partially summed to generate an integral equation
for the mean Green's function which is analogous to
Dyson's equation and an integral equation for the mu-
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tual coherence function analogous to the Bethe—Sal-
peter equation. An approximation for coherent scatter-
ing that corresponds to using the lowest-order kernel
in Dyson's equation is introduced and briefly
discussed.

1. DETERMINISTIC SURFACES

A cross section through a representative surface is
indicated in Fig.1. In all future developments we will
assume that the average surface is perpendicular to
the z axis. The coordinates in planes perpendicular to
the z axis will be x and y. We will henceforth use the
abbreviation x, = x{_ + yi,, where 7, and 7, are unit
vectors in the x and y directions, respectively. The
notation sub 1 will always be used to indicate two-
vectors in the transverse or x,y plane. Thus,z =
h(x,) defines the surface under consideration,and z >
h(x,) is the region of free propagation. The surface
height 2(x,) is assumed to be a smooth single-valued
bounded function of x | with zero mean value. Strictly
speaking the condition that 2(x ) is bounded is incom-
patible with a Gaussian height distribution. However,
if the bound is made sufficiently large compared to the
root mean squared height, then the probability of ex-
ceeding the bound can be made very small.

Since the surface is stationary,the wave equation re-
duces to the Helmholtz equation on separation of the

time variable. The Green's function satisfies the in-
homogeneous Helmholtz equation

(V2 + k2)Gpx| x') = 85(x —x')
where R is the frequency of a point source located at
x’ (in units where the phase velocity is unity). The
source will always be assumed to be in the free pro-

pagation region, and thus z’ > h(x’ ), the normal de-
rivative of the Green's function vanishes,that is

n V. Gyxix') = 0,

z=h(x)

\

FIG.1. A cross section through a representative surface.

J. Math. Phys., Vol. 13, No. 12, December 1972



1904

where n is the unit normal to the surface. When x is
below the surface, Gy(x|x’) is zero;the notation sub D
indicates that the Green's function is discontinuous
across the surface. In Appendix A the determination
of G, is reduced to the solution of an integral equa-
tion.4. 5

The results are

GE(x'|x") = Gy(x' —x") + 2(2m3 [d2x [i, — V h(x,)]

X V'GHx —xg(x,)}Gixs x,)Ix). (1)
where we have introduced the notation x4(x,) for the
location of a point in the surface,that is xs(x) =1,
(x,) +x,,where 7, is a unit vector in the z direction.
The “surface Green's function,” G¢(x's |x"), satisfies
the integral equation
G¢ (xg(x) Ix") = (2m) 3G H(xg(x)) — x")

+2 [d2x @, —V,h(x)) * Ghlxgx)) —x5(x,))
X G#(xg(x,)1x"), (2)

where

Gy(x) = (21)3 [d3k eexGy(k), Gylk)=(kF —k2 +ie)l,

(3)
N
———— — i
X .
—_— — Gg (k)
I3
e — — Gy (k)
¢ 3 o T Tl
——r— - —'3( 2 l..l)
Y (27) ky ks
ol
i - A(?')=fd2xle-ik']'.-xl—ik;h(;l)
X

FIG. 2. Diagram rules for Di(k’k”). Each diagram in the series has
equal weight and is constructed by multiplying the indicated factors as-
sociated with the lines and vertices of the diagrams. Integration over
the three momenta k associated with internal G§ lines completes the
construction of the term in the series associated with the diagram.

- - - - - s
i d

K k" k k' k
2 —e— PP
(03) 3 i

2
;
|
i

:
% ;
L

FIG. 4. Diagrammatic summation of the series to recover the integral
equation for Dg.
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G¥ being the Green's function for the situation where no
surface is present, and where

ek x k% —k3 .
<P i, + kL>
k% — k2t ie k

Gy (x) = i(zm)3 [d3k

(4

The P indicates the Cauchy principal value distribution‘.
The integral equations (1) and (2) have a form more
suitable for our purposes when G#(x’[x") and G§(x'|x")
are expressed in terms of a Fourier transform. Let
GE(x'|x") = (27m)°6 [d3k d3R" ei(K - xK"x") G (k' [k").
s s

(5)
Substituting Egs. (3) and (5) into Eq.(2) gives
Jask' ™ s M Vleak’ (k") — 6,0’ —k")GH(K")

— [2i/(2m3]G3k’) [d3k F&',K)Giklk")} =0, (6)

where
ik ol ) k2 —k'2
Fl',k) = [d2x, exp' ki )] (P -2 Y -
2
ik';vl> [-i (R~ kR )]
—————)exp .
k, —k,

Integrating by parts gives

, RZ2—k'2 k' "k’ —k
Flk ,k):(P L =2 ( = J)A(k’—k), (7)
k, B, —Fk,
where
Alk) = fdle exp[—ile;-xS (xl)J. (8)

The surface term arising from the integration by parts
has been neglected. This can be justified by noting that
h(x,) can be multiplied by a spatial cutoff, such as
exp(—a?2x2), and the field, when defined with respect to

an appropriate set of test functions (representing a set
of finite detectors), will approach a limit as a2 — 0, This
limit is to be taken with the source and detector in the
near field region associated with the cutoff function.

The normal procedure to complete the transformation to
k space would be to apply an inverse Fourier transform
to (6). This cannot be done since (6) is only defined on
the surface. However,if the quantity in the curly bra-
ckets in (6) is taken to be zero,then (6) is satisfied.
Thus, we get the integral equation

Gé(k’ik” = 63(k, _kII)G6(k/l)
R2-K2 K.,k
L Gyk) fd3k(P LI L L)>
(2m)3 k;, k, — k.

x Ak’ —k)Gik k"), (9)

Y

+

which is a sufficient condition that (6) be satisfied.

The Fourier transform of the full Green's function

Gi (k' k") can be related to G (k' |k") by Fourier trans-
forming Eq. (1) and via (3) and (5). Following the same
procedure used to derive Eq.(9) gives

Gik' k") = (2m)35,(k’ —k”) G4 (k")
3k ’ Zl k" (k, _ k) r__ Y "
+ (2m3GHK’) [d3k EECh—— Ak’ —k)Gi(k|k").
(10)

3



SCATTERING OF A SCALAR WAVE

Clearly (6) does not uniquely imply (9). In fact,an ad-
ditional function can be added to the right-hand side of
(9). This function is arbitrary except for the condition

that it must be orthogonal to e *s® L) for all x,. We
have chosen this function to be zero. If it is not ag~
sumed to be zero, then it can be shown that Gk’ k")

is changed but G4(k'|k") is not. This situation is ana-~
logous to the gauge transformations of electrodynamics.
The basic formulation of the problem in momentum, or
k, space is now complete.

We will next consider an iterative series solution to
Eq.(9). Let us define a new function D{ by the equa-
tion

Gik'|k") = 65k’ —k")GHk") + DEk'|k"). (11)
An integral equation for D% is easily derived from (9)

giving

: é kg_klg kr_ ks _k"
Di(k’ k") = GH(k) ( L MR (k *)
(2m)3 K, B, — k"
XA(k/ k”)G (k/f)
2 R2—k'2 k- &, —k
+GyK') [d3k (p S e, w»))
(am)3 k B, —k,

X Ak’ —k)DEk k"), (12)
This integral equation can be iterated to yield a series
for D§{. Examination of this series yields a set of dia-
grammatic rules for the calculation of a general term
in the series. These rules are shown in Fig. 2. The
series for D} can be diagrammatically represented as
shown in Flg 3. A similar series of diagrams can be
written for Dy. It is easy to see that this series can be
summed to reproduce the integral equation for Dy as is
indicated in Fig. 4. The last equation is a diagrammatic
representation of (12). It is also convenient to define the
functions D}, and D7, by the equation

Gk’ (k") =(2m)38,(k

' k")GH(k") + (2m)3D 3K’ k).

Via (10}, D% can be expressed in terms of G giving

k'+ (k' —k)
B~k

2 z

x Ak’ — k)Gi(k|k").

‘ 2i
(k' k") = Gi 3p 4L
DK’ |k") = Gy(k') [d e

The full Green's function G (x'|x”) can be calculated
from these two equations and (11) once D% is known.

Actually, the Green's function is a solution more general
than one usually needs. Often it is the case that the
sources and detectors are located in regions sufficiently
far above the surface that the cutoff surface modes have
decayed enough that they can be neglected. The connec-
tion between these solutions and the Green's function
solutions is given by the reduction formula. The result
is a scattering matrix for the surface which relates the
plane wave decomposition of the scattered fields to the
plane wave decomposition of the incident field ¢ £x)
which satisfies the homogeneous Helmholiz equatmn.

In order to discuss the reduction formula, let us rewrite
the Green's function G% in a form which exp11c1t1y dis-
plays the external free Green's functions evident in the
expansion for D%. This follows from the expansion for
D% and the last equation above. Thus, we have
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G‘b{x' !X”) — 6(X' = X”)
+ (27)3 [d3x, d3x, Gi(x' — x,)p*(x, |X,)G4(x, — X7,
(13)
where
o (xy Ix5)

= [k, kg e™ kG — KIDKk, |K,)(RE — k3o F2 2,
The advantage of this form is that p is localized on the
surface.

The seattered or outgoing field ¥ (x), due to an incoming
free field ¢ (x), can be found by cbserving that any in-
coming free field can be constructed by situating the ap-
propriate source distributions at z” = +«. Following
this line of reasoning it is easy to see that the outgoing
field is given by

Yo(x) = (2m)3 [d3x, dxy Gy (x' [x))p'(xy %)Y (X,).

(14)
The first term in (13) does not contribute to the scatter~
ed field since it gives back the incident field and can be
dropped,

In order to reduce (14) further, let us rewrite Gy in the
form

zkl»xfikzl z

Gy(x) = d2k ,
o = (z )2 Jd k,
where
k,=+ (k3 —kZ)V2

Substituting this into (14) and taking the observation
point inside the region where the cutoff surface waves
have damped out gives

V,(x) = [d2k] el ="y (K'), R, =+ (k§ — K'2)1/2,
(15)

where

QQO(kiL) =

Decomposing the incident field into a plane wave expan-
sion

(w/ik) [dPx; d, ¢ 0 (x, | W (x,).

Yix) = [a2k] e®" g (K1), (16)
where

k= — (kg —k[2)V/2,
gives

9ok = [d2r Tk, K )De (k7)) (17
where the scattering matrix 7+ is given by
Tk’ k") = k{fﬂ%ﬁﬂ/z (n/ik)

kf{"’%(%—k'f)“'g
x (k% — K'2)D3(k’ [k")(k§ —Kk"2). (18)

This last equation can be put in a more convenient form
by noticing that in the limits noted D3 can be replaced by
. This gives
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T:(k' k") = lim
( L J_) k;—»i(kz—k’ 2)1/2
A S

x (k3 — k%) D3(k’ [K")(kG —k"2).  (19)

(n/ik’)

Similarly for the complex conjugate field it follows that

VIE) = a2k e W GYK), k= + (kg — K22,

(20)
VEx") = [d2R) e k"X pXKY), kI =— (k§ —Kk'|2)1/2,
(21)
QK = [d2k) T (—K,|—kDe*k?). (22)

Let us now turn to the application of these results to
scattering from random rough surfaces.

I1l. RANDOM ROUGH SURFACES

Having considered scattering from a general surface in
the preceding section, we will apply these results to
the calculation of moments of Green's functions and
moments of fields scattered from a random rough sur-
face. The moments to be considered are

(OGx;1x)) T Gplx,y |x, )
and

(o (%) Ty 3(x,))-

We will assume that the moments can be calculated by
averaging over an ensemble of surfaces characterized
by a multivariate Gaussian height distribution.

Looking back at the results of Sec.II we see that the
above moments can be determined from the moments
of the Di(k’ |k”) functions, so we are led to consider the
moments

1050k, k) 1T, D5tk [k, ).

These are the basic quantities of interest. As before
we will determine a set of diagrammatic rules for con-
structing a general term in a series for these moments.
From the rules derived in Sec.Il we see that the sur-
face height enters only through the function A(k), where

AK) = [d2x, exp[—ilk," x, + k,h(x )] (23)

The series for D¢ and the series for products of D§
contain products of A functions. Thus,the moments of
the D¢ functions can be written in terms of a sum of
terms each consisting of integrals over functions con-
taining moments of the A function, {IT; A(k;)). In order
to discuss the properties of these moments, it is use-
ful to note that they are just Fourier transforms in x
of the characteristic functions of the joint probability
distribution of heights. The n-point characteristic func-
tion for the surface F, is defined as

n
Folkyzyoeer Ry 3%y 505X, = <exp<—i]§ kah(ij>> .
(24)

For a multivariate Gaussian distribution in & with () =
0,the n-point characteristic function is given by®
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1 n
redstl) —en(—f B kr - xon),
(25)
where {kz},‘ is used to denote the set &, ,,...,%,,,and

similarly {xJ_}n the set x; ,..

.,X, .. The correlation
function I'(x |) is defined as

D&y~ Xp,) = hxy Jh(x,, ). (26)

It is a function of x; | — X, because we assume that
the ensemble of surfaces is invariant under translation
in the x plane.

An examination of the properties of the moments of A
is now necessary. We will assume that I'(x, ) vanishes
as |x_ | - ©. This assumption has important implica-
tions for the singularity structure in {k_}, of {(I1,A(k,)).
These implications can be best exemplified by exam-
ining the two-point moment of A explicitly. The two-
point moment of A is given by

(ARDAK,) = [d2x; d2x,, expl—ilk,, "%, ,
+kyp, " Xy,) — sT(0)(kZ, + k3,)

- klzk2zr(x1¢ — Xy _L)]

n Kok Ry ko kky K
<,H| AlGD = (1 I I ) + Perm(\v*’g ' Z)
¥ Pegm( h-4 6. .. 6) *
FIG. 5. Cluster expansion for moments of A (k). The symbol }, in-

dicates a sum over all different labelings of the diagrams. perm

i
gy = b
N
L) S S S axpansion for
the lowest
e . . three moments
k| ko k3 | o k3 of A(k).
I \ \
AR AR ARSY = 4 g ! + \Y/ 6
PY OGRS
+ hed + S A4
ko kg ks
N V¥
\
& —)—f—)—kl K + —>—7—>—;—>—? I:" +
Dg(kllku) = v v
X X X
o ER L ELE
Dg(k‘lk") - v v v +
% b S

FIG.7. Diagrammatic representation of the series for D} and Dg.
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This can be rewritten as

(Al DA,
= (27)2 eXp[— %P(O)(k%z + k%z)]éz(klx. + k2J.)

X %(2‘")262(1(1_]_) + fdzle_ e('iku'yll)
X [e>ikllk22F(YJ_)_ 1] )

The important point in the expression is that the se-
cond term in the curly brackets is free of 5~function
singularities since

 —

Thig kTG L) 1
iy, l=w

e 0.
This separation of (A(k;)A(k,)} into terms with dif-
ferent singularity structure can be extended to the
general function (I1}.; A(k;)). The result is the cluster
expansion discussed in Appendix B. There it is shown
that this separation is accomplished by letting

n n M

N A= 2 22 2 1 A,dk}.)
{j‘l J jperm M=1 {m;}y, i1 m’({ ]}ml (27)

The notation E{mi}M denotes a sum over all unordered

M element sets {m;},, such that Y1y m, = n,and

E]perm denotes a sum over all different labelings, j, of

the unordered m; element sets {k;},, withj=1,...,n.

The functions A ,, are discussed in Appendix B. Equa-
tion (27) can be véry conveniently represented by the
series of diagrams shown in Fig.5. The first few dia-
grams in the cluster expansion for {[1A) are explicitly
shown in Fig. 6.

Since Di(k’|k") can be expressed in terms of series in-
volving integrals over products of A functions, we can
use the cluster expansion for the expectation value of
products of A functions to find a set of rules for generat-
ing a general term in the series for (nDS). Let us recall
from Sec.II the diagrammatic representation of D§ as
shown in Fig.7,where each ik represents a factor of
A(k) and also recall the similar representation for Dj.
Combining these rules for D¢ with the rules for the clus-
ter expansion of (F[]. A(k].)> yields a set of rules for cal-~
culating a general term in the series for (ILD). These
rules are shown in Fig.8. A more complete discussion
of the combinatorial problem leading to the rules can be
found in Ref. 3 by Frisch.

An example of the application of these rules is shown in
Fig. 9 where the diagram series for (D) is displayed.

The mutual coherence function { LW ) is a quantity
of particular interest because of its close relationship to
the scattered intensity,which is one of the most access-
ible pieces of data experimentally. It can be related to
averages of D; functions through the reduction formula
derived in the previous section. From Egs.(16)—(22) of
Sec.II it follows that

(W, WD)
= [d2k, a2k, ik xK XN g (k Jo¥(k’,)), (28)
where
(0,0 )X’ )
= [azk,,a2k; (T*( |k, )T (—K,|—k],))
X @k;, o¥k;,)
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and where
(T I, )T (— k' 1 — K} )
= e ifkine bGP,
B s (RE-K2I2 ki ~- (k3K 2V
x (w2/k, k) (kg —Kk2)(k3 —k'2)}D; (k|k,)
X D§ (— k' |— k) (R ~K2)(kE —k;2). (30)

Due to translational invariance in the x, plane,a 6 func-
tion can be extracted from this last equation,that is, we
can write
(T, [k; VT (— k', |—k},)
= 62[(1{_!_ _k’J.) - (kiJ._ k’iJ.)]
x Ple, + X)k, —k, 3k, + k). (31)

These general expressions are somewhat complex. They
are considerably simpler if the incident wave is a plane
wave, a case which is also of practical interest. For this
case

(pi(kl.) =0k, —k;,)
and, thus,
<(Po(k_|_)<P8(k’J_)> = (T+(k1.lkiJ.)T-(_ k/J.|—kiJ.)>

= éz(kL——k:_)I(kL,kiJ_)’ (32)
where I is the intensity scattered in the k, direction due
to a plane wave incident from the k,, direction. Using
the rules for averages of products of D functions and
Eqgs. (30) and (32), we can write down the lowest-order
coherent and incoherent scattered intensities.

exp{-% I‘(o)k%}

G;(k)=(;§—;2+ie !

\

3
—_
3

{

&
" N
—_— Gglk}=(k2-Kk2 —ie)”!

= 2 2 m
Kk i kG—kI KLk
3 . 2'3(P0.l+l..l)
T,
Y (2) Ky K
K=k-k
¥
Y .
5 = (2m)2 8, (k)
K
Y . o
i - {(2m2 8, (k)| +kp ) Rp (), ko)
k2
R . L
kZ*'i__ — (2m) 82(k|l+k21+k3l)R3(k|,k2,k3)
ks

etc

FIG. 8. Diagram rules for (1lD;). Each diagram in the series has equal
weight and is constructed by multiplying the indicated factors associ-
ated with the lines and vertices of the diagrams. Integration over the
three momenta k associated with internal G lines completes the con~
struction of the term in the series associated with the diagram. The
funetion R is discussed in Appendix B.

iy LB R R T

FIG. 9. Diagram series for (D).
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The lowest-order coherent,or specularly-scattered,in-
tensity is given by the diagram shown in Fig. 10, which
on evaluation gives

Ik, k; ) =08,k, —k,, ) exp[—4T(0) (k% —k2)].

The b function indicates that the scattering is specular.
The normalization of I follows from this expression
since I'(0) = 0 corresponds to mirror reflection.

Similarly,the lowest-order,incoherently-scattered in-
tensity is given by the diagram shown in Fig.11, which
on evaluation gives

k- (k—k;)\?2
Tt el Tk, — £,7)

2

Ik,.k,,) :(

X (27)2 fdzy Lei(kl-ku)-n {exp[l"(yL)(kz _ kiz)z] —1},

Kk K;
T
I
FIG. 10. Diagram for the lowest-order
specular scattering.
-k -ki
K Ki
—)—T—P-—
! FIG. 11. Diagram for the lowest-order
4> incoherent scattering.
o -k;
—»—v—’-ﬁ—’—
A\ ¥
Y
?
_»\_,_L_,_,_ FIG. 12, Examples of connected
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-P—ﬁbﬁ—»—
X
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where

k, =+ (kg —k31/2, R, =— (k3 —k2,)¥/2,
These results correspond to the usual results based on
the Kirchhoff approximation.!

We will now rewrite the series for the first two mo-
ments of G in terms of linear integral equations by par-
tially summing their series. There are basically two
reasons for doing this. First,it considerably reduces
the number of diagrams that must be individually con-
sidered when constructing approximate solutions and
when performing formal manipulations, and second, it
probably improves the convergence of the series. The
reasons for this latter conjecture will be mentioned
later. To facilitate this development,let us categorize
the diagrams into classes. We will call a diagram dis-
connected if it can be broken into two parts,not connec-
ted to each other by any lines,by removing a G and/or
a Gy line. A diagram,which is not disconnected, is con-
nected. Some examples of connected diagrams in the
expansion of {D) are shown in Fig.12. Similarly, Fig.13
shows some connected diagrams for (D*D").

Examination of the series for (D¢ (k| k,)) reveals that
one can write

(D iky)) = Pilk|k,)Gyky) + [d3k,P,(klk, XDg(k, k),
(33)

where Pi(kk,)Gy(k,) is equal to the sum of the connec-
ted diagrams contained in the series for (D¢ (k k).
Equation (33) can be reduced to a one-dimensional inte-
gral equation. Because of translational invariance,a 6
function can be factored out of P,. Therefore,we can
write
1k |k') = Gy(k,)O4(k, £,k —K)) (34)
and ,
Dk k') = Gilk,)D*(k, | k,)GH(R,)0,0k, —K'). (35)
Combining (33), (34), and (35) gives
DE(k, | R,) = @3(k, |®%)
+ [dr,@3(k, | £))GH (D (k] | k). (36)

For convenience the k , dependence of the above quanti-
ties has not been explicitly noted. The integral equation
for {(G¢) is also easily found from (33). It follows from

Eq.(11) that

(G lk,)) = 63k —k;)GEk;) + Diklk, ).
The resulting integral equation is
(Géklky) =0,k —k,)Gplk,)
+ [a3h,Pi0c k) GE K, k). (37)

Similarly, examination of the series for (Dilk|k’)
D3k, k%)) reveals that one can write

(D3 [k D5 X)) = D5k [k, D5k’ k1))
+ [d3k,P,k, K |k, kD5, [k NGyK,)
+ [d3R,P Kk, k' [k, k5)GhH(k, XDs(k) k1)
+ Pylk,k’ [ky,k])GHk,)Go(k))
+ [d3k,d3RLP 5k, k' |k p,k ) Dgk [k D5k’ k1)),

(38)
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where
Pylk,k’ |kq,k})GHk )G oK)

is equal to the sum of connected graphs contained in the
series for

(Dg(k [k )D5(k’ k1))

Equation (38) can be rewritten using (11) to give an inte-
gral equation for {G4(k |k")G5(k, |k})). The result is

(G3le 1k )Gs(ky [K7)) = (Gilk | k)){Gglhky K1)

+ [d3k,d3k,P ok, k' [k 5, k5NGHK, 1k, )G5kEKT ). (39)
Equations (37) and (39) are the equivalents of Dyson’s
equation and the Bethe—Salpeter equation for a rough
surface. Earlier we mentioned that the sequence of ap-
proximations to {D¢) and (DiD;) generated by a sequence
of finite series approximations to P, and Py probably
are more convergent than the sequence for (D§> and
(D_;DS‘) formed directly. Our reasoning is: This partial
summation is necessary for the case of a random medi-
um with homogeneous statistics,in order to remove se-
cular terms. The introduction of inhomogeneous statis-
tics removes the secular terms and the need for partial
summation; but a residual effect must sitill be present.
It is probably in the form of poor convergence. The
similarity of this problem to rough surface scattering
led to the conjecture made earlier.

As an example of what can be done with these integral
equations, let us consider the lowest-order approxima-
tion to P; shown in Fig. 14. On evaluation this diagram
gives

i kE—k2

C*(k|k) =~ P —k——ﬁ exp[— sT(0)(k, — k.)2].

(40)
We will call this the average surface approximation
since the correlation length does not appear. This is
what one would expect if the surface,in some sense,
were averaged over translations in the x, plane before
scattering. It is the logical extension of the lowest-order
result for coherent scattering from a rough surface.
Combining (40) with (36) and letting

kg — k3
3

z

i
Di(k, k) =— P T (k, | k)

gives an integral equation for 7*:

7k, | K,) = exp[— ST(O)(k, — k)]

i 1
+ 1 far! exp[— AT(O)(k, — E)2] <p k—)
il
B2 — K2
« o —ki (k! k).
kB —k2 — k)2 ic

(42)

The corresponding scattered intensity follows from (30),
(32),(35),and (41). We have

Ik, k) = |77k, | — k) 20,k, —k,,), (43)
KoK
P (k1k') G{k')= I FIG. 14. Lowest-order approximation to Pj.
&
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where

k, =+ (k2 —k3)1/2,

As the roughness of the surface vanishes or as I'(0) - 0
the solution of (42) should reduce to mirror reflection.

Observing that in this limit the right-hand side of (42)
is independent of k, and that the kernel of (42) is anti-
symmetric, one can immediately conclude that

(R, 1 R,) @m0 1s
thus showing that mirror reflection is obtained.

IV. CONCLUDING REMARKS

A series solution to the moments of fields scattered
from random rough surfaces has been developed. While
explicit calculation of high~order terms in these series
is probably impractical,the existence of a formally sim-
ple systematic procedure is very useful. For exampie,
the series can be partially summed to construct integral
equations for moments of Green's functions, two parti-
cularly interesting examples of which we have briefly
discussed. These integral equations can be approximated
in various ways depending on the particular problem
under consideration. This latter area is one where
good experimental data based on scattering from care-
fully controlled surfaces would be an aid in constructing
useful approximations.
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APPENDIX A

In order to derive Eqs. (1)-(4), let us start with the con-
tinuous Green's function G, which satisfies the inhomo-
geneous Helmholtz equation

(V2 + k3G, (x]x') = 84(x —x)

with the boundary condition that its normal derivative
vanish on the surface given by z = k(x ). The function
G, is regular everywhere except at x = x’, The free
Green's function G, satisfies the same differential equa-
tion as G, but it has pure outgoing or incoming boundary
conditions as |x —x’'|— . Applying Green's theorem
gives

V - [GoxIx' WG, (x|x") — G, x[x" WG o(x|x)]

=Gox[x)85(x —x") — G (x|x")54(x —x'). (A1)

Multiplying (A1) by the unit step function [z — h(x,)]

L,
9(2) :{
0, z<0,

z >0,

and integrating over all space gives
G.(x'1x")0[z" —h(x")] = Golx’ —x")0(2" — h(x"))
+ [d3x(i, —V 1(x,)) " [Golx —XVG,(x|x")

~ G, (XIX"VG & —x)]6{z — h(x))). (A2)

J. Math. Phys., Vol. 13, No. 12, December 1972



1910

The last term in (A2) has been integrated by parts, Ap-
plying the boundary condition

[iz# VJ.h’(xJ,)] ‘VGc(xs(xJ_)le) =0,
where
Xgx,)=x, +hix,)

gives

Gpx'1x") = Go(x' ~x")
+ fazx (G, —Vr(x,) " {V'Golx’ —xs(x )
X G,(xs(x ) |x"), (A3)
where
Gpx'[x") =G (x'|x")0[z" — h(x')].
Also,we have agsumed that z” > h{x’}), that is,the
source is above the plane. In order to facilitate taking

the surface limit of (A3) we will rewrite the kernel of
{A3). Now
eikx

Go(x) = (2m)3 [d3k —E—
olx) =2 | k3 — k2 + ie

= Gp(x) + Gg*x)
carrying out the k&, integration gives (¢ — 0)
explik, ' x, + (kg —k2)1/2|z(}

2i(k2 —k2)1/2

Golx) = (2m)°2 [d2k,

Thus,
8,6 o)
= (1) [d2k, explik, - x, + i(k3 —k2)1/2|z]]e'(2),
(Ad4)
where
(+%, z2>0,
6'(2) ::{
-1, z<0.

Equation (A4) has a singularity at z = 0 which can be
separated off in the following way;
9,Gox) = (212 [d2k, explik, *x,)

x (expli(kd —k2%)/2|z]] — 1)€'(2)

+ B,(x, )e'{z).

Substituting this into (A3) gives

G &' 1x") = Golx’ —X") + Golxg(x,) Ix"e[z’ — hix})]

+ [azx (i, —VRh(x,)) - Golx’ — x5(x, )G o(xg(x ) %),

A5
where (A5)

KX

B2 — k2
(P o k%I

z

Golx) = i(2m)3 [d3k Py £, + kL>.

Since we are considering single-valued surfaces,we can
let X’ approach the surface from above and combine the
second term on the right-hand side of (A5) with the left

giving
Gglxgx ) Ix™) = (273G g[xs(x’ ) — x"]
+2 [d2x (t, =V h(x))) * Golxsx') —xg(x,)]

X Gglxs(x,)Ix"), (AB)
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where

22m3G4xs(x ) x") = | lim = G (x'|x").

2" 2h(xy)

Rewriting (A3) in terms of G5 gives

Gplx' x") = Gylx" —x")
+ 2(2m)3 [d2x,[5, ~V, hix,)] - {V'G[x' —xsx,)}}
X Gglxglx,)Ix").

This equation and Eq,(A6) are the desired relations.

APPENDIX B

Let us define an irreducible characteristic function
K, {k,,x.},) by 37

Eraxt)= 5 % % K, (k%0

jperm M=1 {m;}y, i=1
M (Bl)

where Z}{mi}M denote a sum over all unordered M ele-
de-

notes a sum over all different labelings, j, of the un-
ordered sets {k,,,x;.}, withj =1,...,n. Equation
(B1) can be solved recursively for K({k,,x.},). We will
now show by induction that for » > 1 these irreducible
characteristic functions have the property that they va-
nish as any x, in the set is taken to be distant from any
of the other members of the set.

ment sets {m,}M such that 7315, m; == and Dipern

Let us first rewrite (B1) in a more suitable form
Kn ({kz 7x_|_}n) = Fn({kz7xj,}n)
n M
- 5L o 0K, k%))

jperm M=2 {mly i=1

(B2)

From Eq.(25) it follows that

F,{dk,,x.1,) F oAk, x\ OF, ) (e, xn Y, L)
(B3)

where {|x’, — x|} = © means that |x, — x| = © for all
x’,in the set { },, and x” in the set{ },_,. Assume that

>
{ixx{ e

Kulk®.d) 5

—_—
X\ -x e

0, 1 <m <n.
From this and Egs. (B1) and (B2) it follows that

K,(%,,x.},) F Q8 % b IF, QR XL )

—
{x-x e
m M’

(2 2 o N K rat,)
<j‘perm M=1L {ml}M' i1 g Frzrjriimg

n=m M7
X( I Km-n({kj”z’xj".l.}m-n)>7
Fperm M7=1 {m;} e 1721 ¢ ¢

n>1)
and thus from (B1)

K kx4 sz, 00 n> L

% { oo

This concludes the proof.
The first three irreducible characteristic functions are
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K,(1) = F,(1),

Ky(1,2) = Fy(1,2) — Ky (DK (2),

K4(1,2,3) = F4(1,2,3) — K,(1,2)K,(3) — K,(1, 3)K,(2)
~ K,(2,3)K,(1) — K; (1)K, (2)K,(3),

where we have used the condensed notation

Kl(l) =K1(k12rx11_)>
K,(1,2) =Ky(ky,,X113k9,,%0, ),

etc.

Since the K, functions are well behaved as the points
are separated, we can now complete the program of se-
parating the singularity structures of (I1; A(k;)). We will
use a new set of irreducible functions A, , which are the
Fourier transforms with respect to x, of the irreduc-
ible characteristic functions,i.e.,

n
Ak, .. .k,) = fd%x - -d2x | exp(— i Zi k; ¢ ij>
iz

XKn(klz’le;"';knz,an)- (B4)
From Eqgs. (23),(24),(27),and (B4) we get
(Aky= B 5 %04, dk),).  (®9)
=

jperm M=1 {m;}y; i-1

This is the desired cluster expansion. Writing out (B5)
forn =1,2,3 gives
(A1) = A1),
(A(DAQ2)) =A,(DA,(2) +A,(1,2),
(A(NA(2JA(3)) = A (1)A;(2)A,(8) + A,(1,2)A,(3)
+A,(1,3)4,(2) + A4,(2,3)4,(1) + A4(1,2,3),

where the condensed notation
Ak;) = A1), ete.

has been used.

We will now explicitly display the §-function singularity
in A,. Translational invariance in the x plane of the
ensemble of surfaces implies

Kn({kZ’X_L}n) = Kn({kzny_ + Yl}n)s

1911

where Y | is arbitrary. This invariance can be used to
transform to a new set of coordinates {y, }, where one
integration in (30) can be performed. Let

Vio=%X;.—%,, 1<mn
Yoo =X, 4.

The Jacobian of this transformation is unity. Using this
transformation and taking Y, =y, , gives

n-1
An({k}n) = fdzle_' rd?y, eXp[— i Z])_ kj, *¥;.
=
. n
- z<21 kjL> . y“} K, (ky, Xy 57 "3k, ,,0).
I
The y, , integration can be performed giving

A, dK},) = (2m)26, ( 21 kﬂ> Ja2y, - -d?y, 6,3, .)

7
. n
X exp<— i Zi k;,* me) K,(k,,y.})-
=
From the characteristic function given in Eq. (25), we

see that all of the A4, ({k}n) have a factor of exp(— 5I'(0) x

E;‘zl kfz) that can be extracted. With this in mind we will
define the functions R, by

A, k) = 2m2s, (fi K, l> exp(—;—F(O) ]Zn_)l kfz> R,dk},).
Z .

It is now easy to write out the first three expressions for
R, explicitly
..'k .

Rylky ky) = [d2y e ™2+ H{exp[—T(y )by, ky, ] — 1},
R4k, ky k) = fdzylldzyzle'i(ku'ylszL'YzJ.)

¥ {exp[— T(yy L — ¥3.)k1 ko, — T(yy )Ry ks,

- I-‘(yZ.L)kZ.zkfiz] - exP[_ 1—‘(yl.l. _~y2L)klzk2z1

- exP[_ F(ylL)klszZ]— eXp[_ F(y2.L)ksz3z] + 2}'
It is interesting to note that if we let I'(x, ) = I'(0)C(x, ),
where C(0) = 1,and expand R, in a Taylor series in

T(0),then the lowest power of I'(0) appearing in the
series is T'(0)» 1.
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A kinetic theory for power transfer in stochastic systems
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In the asymptotic limit of weak inhomogeneities and long times or distances, we obtain a system of kinetic equations
governing the power transfer among the maodes of oscillation of certain stochastic dynamical systems. We include applications
to coupled oscillators, waveguides, beams, the quantized motion of a particle in a random potential, and the Klein-Gordon

equation with random plasma frequency.

1. INTRODUCTION

The author and J. B. Keller employed previously! a
method for computing moments of the solution of sto-
chastic equations in a certain asymptotic limit. Subse-
quently, this method was justified for a large class of
problems, 2.3

We present here a kinetic theory for coupled systems of
stochastic equations by employing the above method.!
Specifically, we consider a general oscillatory system
and find equations for the mean of the modulus square
of the amplitudes. This problem is well known in statis-
tical mechanics and the resulting kinetic equations are
called master equations.4~6 Our results, however, follow
rigorously from previous results*—3 and are obtained in
a natural manner, without recourse to elaborate pertur-
bation schemes, in the asymptotic limit of long times (or
distances) and weak fluctuations.

In Sec. 2 we formulate the problem under consideration
for a general class of coupled stochastic equations. In
Sec. 3 we apply the above method!~3 to obtain the kinetic
equations.

In Sec. 4 we apply the results of Sec. 3 to wave propaga-
tion in a waveguide with random inhomogeneities and fo
Gaussian beams through random media. The same equa-
tions [(4. 10}, (4. 12}, and (4. 13)] have obvious signifi-
cance for quantum mechanical problems. They are mas-
ter equations for the probability amplitudes first obtain-
ed by Pauli.? In connection with the waveguide problem,
kinetic equations were first obtained in a heuristic man-
ner by Marcuse.®9 The same problem has been treated
by Young and Rowe'0 and Morrison and McKenna.!! The
latter employed the above method® as we do here.

In Sec. 5 we apply the results of Sec. 3 to a system of
coupled harmonic oscillators. The single random har-
monic oscillator has been treated by several authors be-
ginning with Stratonovich.12 Our results here generalize
the results of Stratonovich and the author and Keller.!

In Sec. 6 we consider the Schrodinger equation for a par-
ticle in a random potential. We obtain kinetic or trans-
port equations for the average probability density of the
particle in momentum space in the usual asymptotic
limit.

In Sec. 7 we consider the Klein—-Gordon equation with
random plasma frequency. We obtain a transport equa-
tion for the average field energy density in wavenumber
space. The results of Secs. 6 and 7 are the continuous or
infinite dimensional analogs of the results of Secs. 4 and
5, respectively. Naturally the application of the theory2:3
is somewhat more involved here. We shall concenirate,
however, on obtaining and interpreting the transport
equations. In Secs. 6 and 7 we also omit details of some
derivations since they are simple generalizations of
those of previous sections.
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2. FORMULATION OF THE PROBLEM

Let v(f) be a complex n-vector function of f satisfying
the system of equations

) _ (ik + ex(D))v(t),

o (=20, v0)=u,, i =v—1

»

(2. 1)
k = diag(kq, ky,...,k,), k; real and distinct.
Here x(t) = {x, (1)) denotes a real or complex matrix
valued stochasgic process and € is a small parameter.
We assume that the processes Kpy (f) have mean zero

Efx, 0} =0, pga=1,...,n, (2.2)
and that they are wide sense stationary
Elx, (t + 8)x, 0 ) =Ry 4o (). (2.3)

Equations (2. 1) define the process v(f). We wish to study
the statistical properties of this process;in particular,
we are interested in the quantities

E{v, (%)}, p=1,...,n. (2. 4)
Here * stands for complex conjugate. In many problems,
as we will see in Secs. 4 and 5, the quantities (2. 4) re-
present power and are thus called power amplitudes.
The main result of Sec. 3 is that in the limit { — «,
€ — 0, €2t = const, the quantities (2. 4) satisfy a system
of coupled equations which we call the kinetic equations
because of their form.

Let us now transform (2. 1) into a more convenient form.
First we introduce the slowly varying amplitudes u{¢) by

zi(t)b = etkiy{f). 2.5)
From (2. 5) and (2. 1) it follows that
3_;‘ = eleittx(teit)yu = ex()u, u(0) = uy. (2.6)

Clearly the power amplitudes are not affected by the
transformation (2. 5). Next we introduce the tensor pro-
duct?® of x# and u*:

y{(t) = u(t) ® u*{t). 2.7

By differentiating y and using (2. 6), we obtain the equa-
tions

dd? =elx(t) @ I + 1@ D)y = eV(t)y,

v(0) = uy ® uly, I = identity matrix. (2.8)
By using indices and the summation convention, (2. 8)

takes the form

1912



A KINETIC THEORY FOR POWER TRANSFER

Ay, pe ~
_t- = €{xp

,+6 x*

patp'a }yqq” ¥(0) = uopugp

Vppr = Upthe.  (2.9)
In (2.9) 6 pa denotes the Kronecker delta function.

Equations (2. 8) or (2.9) are set up appropriately now for
the application of the method referred to in the Introduc-
tion.1

3. THE KINETIC EQUATIONS

Let 7 and v (1) be defined by

r=¢2¢, (1) =y(r/€2), yasin(2.7). (3.1)
According to previous resultsl—3
w(t) = lim E{y@ (1)}, 0=71=7,, (3.2)

€—=>0

exists and the vector w(7) satisfies the system of equa-
tions

dw(T1)
art

=Vw(r), w(0)=u, ® ud,

f f E{V(s

The precise hypotheses in the theory2-3 can be satisfied
easily here since V() of (2. 8) is finite dimensional. Of
course, the process x(f) must also satisfy certain hypo-
theses. For our purposes here it suffices to assume that

= 11m (o)}dods. (3.3)

o
L Oqu,p’q’ (O)do < wy p9q,p,yq, = 1! e :n' (3' 4)

We now proceed with the applications of this resuit.
From (2. 8) we see that

V(S)WV(o) = (x(8) @ I + I ® x*(s))(x(0) ® I + I ® x*(0))

=x(8)x(0)® I+ ® ;c'*(s))?*(o) + x(s) ® x*(o)
+ x(0) ® £*(s). (3.5)

|

To find the form of ¥, we insert (3. 5) into (3. 3) and com-
pute the limit for each term in (3. 5) separately. We have

£ 00 1)

.1 ptops i(k,~k,)s
= Oprg lim 7 f Bl (5)

x ¢’ (kg kr)o c}dcrds
_ 5 o Hm = 1 f f p)s+ilkyky) (s-0)
=00

X RNM(U) dods

® ik, ~k,)
= 0,00, fo e kg Ry °R,, ., (0)do. (3.6)

n (3. 6) we have used the summation convention, (3. 4),
and the fact that %z,, %,,..., &, are distinct real numbers.
A calculation identical to the above yields

. 1 pt ps ~ ~.
<}]i1;1° B fO fO E{I®x*(3)x*(0)}d0ds>pq,p’q’

=65,,0 fooo ei(kq'—k”')oR::’:,, rq (0)do.

rg p'q @G.7)

Here we have introduced the notation

RYZ 0 (0) = Edx} (0 + D}y (D) (3. 8)
We shall also need the notation

R¥, g (@) = Efx}, (0 + Dx 0 (D, o0

Ry (0) = Edxyp(o + Dk (D)

Before proceeding with the remaining computations for
V we observe the following. Our principal interest lies
not in the full tensor

w(T) = (Wpy (7)), (3.10)
but rather in the “diagonal” part,
Wp(T):wpp(T)- (311)

In general, the W, which are the limits of (2. 4), do not
satisfy a closed system of equations. For the particular
system under consideration, however, they do satisfy a
closed system. We now show this remarkable fact.

Let us continue with the computation of the limit V. We
have

. 1 t s ~ -
<11m 7 fo fo E{x(s) ®x*(o)}dods>mp.q,
t s iCky-ky)
A fo E{e" " "7 %5, (s)

-z(k -kp:)o *

X e o (0)dods

1 ptes ik -k )s milkyimkye) (s~a)
— - q *p q
lim fo fo e e

t
x R (0)dods. (3.12)

pa.p'q
From the above remarks it follows that if the condition
p = p’ implies that (3.12) is zero unless g = ¢’, then, in
view of (3.6), (3.7), the claim of the preceding paragraph
follows. Now it is easy to see that in fact when p = p’,

e

© ik, -k
=8, [y e TRRY L (0)do. (3.13)
An identical calculation yields, when p = p’,
. 1 ¢ s ~ ~%
<}i1£ 7 fo fo E{x(0) ® x (s)}dcds)l,q.pq.
. - (k -kylo
=0, [y T TIPORY, (0)do  (3.14)

On collecting our formulas above, we obtain the main
result of this section, the kinetic equations for the
asymptotic limit of the mean power amplitudes Wp('r):

aw, »
e 2 RuWas  W,0) =luy,l2, (3.15)
@ =8y ([ €1HIR,, 010
+ fooo eilkq _kT)OR;r*rq(U)d(T)
0 ik, ky)
t Uy @R, (0 do
+ foc e—z(k kp)oR (0)do (3.16)

(4] ra.paq
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We may also obtain kinetic equations for the off diagonal
terms of the tensor w by completing the calculation of V.
However, since they decouple from the diagonal, they
will not concern us here.

4. APPLICATION TO WAVEGUIDES AND BEAMS

Our first application concerns mode coupling in a wave-
guide with random irregularities. The problem is as
follows.

Let u(x, y, z) denote the time harmonic complex field
satisfying the boundary value problem
Uy ¥ Uyy Ty, + E202(x,y,2)u =0,
y,z2 € D CR2,
for (y,z) € aD.

—o<x < W,

ulr,y,2) =0 4.1
Here k is the free space wavenumber, 12(x, v, z) is the
index of refraction,and oD denotes the boundary of the
region D. We shall assume that #n2(x,y, z) is a stationary
random field that deviates little from its mean value.
Then we may expand the field in a series using the
eigenfunctions of the cross section D:

(Oyy + 000, =—22h,, n=12,...,

hn(yyz)=0’ (y,z)E a:D’
(k) = [ h(y,2)h,(v,2)dydz = &, ,.

The ensuing system of ordinary differential equations
for the amplitudes of the modes, i.e., the coefficients in
the expansion as functions of x, cannot be treated by the
method of Sec. 3 because problem (4. 1) is not an initial
value problem. The full analysis of this system of equa-
tions requires special considerations and is treated
elsewhere.13

To study (4. 1) by the methods of Sec. 3, we resort to the
forward scattering or parabolic approximation. We omit
details on the validity of this approximation and describe
it as follows. We write u in the form

{4.2)

“(x’yyz)zeikxv(x,y"z)> 4.3)
insert (4. 3) in (4. 1), and neglect 9, , v to obtain
(3, + 3,, v+ 20k3, v + k22— 1)v =0, (4. 4)

On scaling the transverse variables, y, z by the factor
k and assuming that

n2 —1= (€/k)u(x,y,z),
. a stationary, zero mean random field, (4.5)

we arrive formally at an initial value problem for v:

x >0,
(y,2) € 3D,

2i9,v + (ayy + 9, )0+ euw = 0,
(y,2) €D,
v(O,y,z):vo(y,Z)

U(x; Y, Z) = 0)
given. (4.6)
Now we expand the solution of (4. 6) using the eigenfunc-
tions (4. 2). To conform with the notation of Sec. 3, we
use { instead of x and set

oty y,2) = 5 v, (DA, (, 2). @7
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Upon inserting (4. 7) into (4. 6) and using (4. 2), we obtain
the following system of equations for vp(t):

dv, N
ar =ik, t € qz=>1 iy, (v, t=0,

v,(0), given, p=1,2,--".

Here we have the notation

B, =— 822, w, (=3 [ u(t,y,zmq(y,z)hp(y,zwgd;
Note that the matrix u(¢) = (upq(t)) is real and sym-
metric. Since p(f,y,z) is a random field, the matrix u(f)
is a process whose statistics follow from those of
u(f,v,z). It is convenient to also make the following
approximation. We truncate the system (4. 8) to the
first » equations and write

U
U= s k = diag (kl, . ,kn), x(f) = i(/.qu(t)),
v
n p,a=12,...,n,
%;—’ = (ik + ex(v, v(0)=u, given. (4.10)

We have thus a problem of the form (2. 1). Incidentally,
the truncation above is not necessary (the theory2= can
handle infinite-dimensional systems). The results, how-
ever, are in better accord with (4. 1), where for given %

only finitely many modes propagate.

The kinetic equations (3. 15) for the mean power ampli-
tudes,

W,(1) = lim E{lv,(1/€2)| 2}, (4.11)
=0
become here
aw 2
i .
dT = qZ:>1 quu/q’ (4 1&)

Ry, =2 foo[cos(kp = kJ0lppg,pe(0)do,  p # 4,

0

Qpp =— (g Qys ppq.P(l(o) = E{I»lpq(o i S)upq(S)}.(‘l. 13)

In (4. 13) we have used the form of the matrix x(¢) as
defined in (4. 10). From (4. 12), (4. 13) it follows that

Q0 =Qp (4.14)
and that
n
27 W, (1) = const. (4.15)
p=1

The conservation equation (4, 15) is in accord with

i lv,(t)]2 = const, (4. 18)

which follows from (4. 10). Note also that @,, = 0,
b # q,since @ ,, is a cosine transform of a correlation
function.

Equations (4. 12) are the kinetic equations for the mean
power amplitudes in the asymptotic limit € - 0, — o0,
€2t = 7. They are the main result of this section.

If we take the constant in (4. 15) equal to 1, then we may
interpret the Wp('r) as probabilities and (4. 1%) as a Kol-
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mogorov equationl4 for a continuous time Markov chain,
The Markov chain can be thought of as governing the
mechanism of power transfer among the modes. The
quantity

a = max{— Q;%}, (4. 17)
?

is the largest expected distance (f, 7 are length para-
meters) between transitions of the chain. Thus when
a < 7,then, W,(7) is approximated well by the equili-
briwm solution of (4. 13),

W,=1/m, p=12,...,n (4.18)
We have arrived at an equipartition law for the mean
power amplitudes under the approximations and assump-
tions made above. This result has been observed in
numerical simulations of a simple model by Marcuse.?

The application of the above considerations to Gaussian
beamsl5 is immediate. We merely have to change the
eigenfunctions (4. 2). The transverse variables vy, z, now
vary over R2 but the index of refraction is given by
n2(t,y,z) =1— (y2 + z2)[1 + (e/R)ult, y, 2)]. (4. 19)
The eigenfunctions are now Hermite functions in two
variables and the spectrum remains discrete. The
orthonormality relation in (4. 2) still holds if we define
the inner product of eigenfunctions appropriately. For
more details on the physical problem we refer to
Arnaudl5 and the recent work of the author, McLaughlin,
and Burridge.16

5. APPLICATION TO RANDOMLY COUPLED
OSCILLATORS

In this section we shall apply the results of Section 3 to
the following problem. Let z(f) be a real n-vector func-
tion satisfying the equations

‘%j% F (k2 + i) 2(t) = 0,
d0) =2y, LB _s k2 —diag(e,..., k).
5.1)

In (5.1) we assume that k4, %,,..., %, are real positive
and distinct and u(t) is a real symmetric » X n matrix
valued process, stationary and with zero mean. We in-
troduce new dependent variables A(t) and B(f) by the
relations

2(t) = k1/2(iIA(l) + e iFB(1)),

dz(t)
dt

= k1/2(eiktA(l) — e iktB(1)). (5.2)

Upon using these relations and (5. 1), we obtain the fol-
lowing system of equations for the n-vector valued pro-
cesses A(f) and B(t):

d(A(t)) je (6‘”” 0 ) u(t) u(é)
dt\gw) 2 \o gikt <— () ~u(t)>

ettt @ A
X < ) ( >’
0 e ikt B

W) = k12t k102, (5.3)
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Note that u(f) is a real symmetric # X n matrix valued
process. Also,from (5. 3) we find that

Zn)l (14,12 — IB,()[2) = const. (5. 4)
p=

This conservation law is markedly different from (4. 16).
It can be used, however, to obtain a detailed analysis of
the one-dimensional waveguide problem, witioutf the
parabolic approximation, where the equations (5. 1)
arise. This has been carried out elsewhere.13 When the
problem (5. 1) concerns a mechanical or other system of
oscillators then the quantities

la, 012 +1B,®O12, p=1,...,n, (5. 5)
are of interest, because they represent the instantaneous
energy of each oscillator. However, the sum of the

energies (5. 5) is not conserved and this will appear ex-
plicitly in the kinetic equation we now derive.

In order to use the results of Sec. 3 we introduce the fol~
lowing notation. Let J be the n X n matrix,

0 o o 0 1
0---10
J= , (5.6)
and let
Fu
Uopel
JA :
It(t) = ( > = | % (5 7)
B Uy
u?’l
Then we may rewrite (5. 3) in the form
d;‘t(” = e iKix (()eikty(f), (5. 8)
Jeikty 0
eiKt — ( >’ (5. 9)
0 e-ikt
i Jud Ju
x(t) = 7 < ) (5. 10)
—uJ = pu

Note that the index in the vectors and matrices runs now
as follows: —n, — (w —1),..., —1,1,...,n. Equations
(5. 8) are indeed in the form (2. 6), and so we can apply
the results (3. 15), (3. 16) directly. Thus we obtain

dw n
b &
dr  ~ 47_;/1 (Q'P~‘4W-q + Q*tz.qu)’ p=1,...,m,
dw ”
?
T = 2 @ W @, W), p=1,...,n, (511)

g=1
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n
1 oo
@p,q =0y 72:;1 B fo [cos(k, + &,)o

—cos(k, — k )U]pp,,,,p(o)do

+3 fo — k)l g5, (0)do,  p,q >0,
(5.12)

Q=1 [ [cos(e, + ko0, 0 (0)do,  p,q >0,
(5.13)
Qp-4=9po Qg =9, (5.14)

Here the covariances p,, .. (0) are defined by (4. 13).
The results (5. 11)-(5. f’Z follow by elementary consi-
derations from (3. 16) and the special form (5. 10) of x(¢).

From (5.11)-(5. 14) it follows immediately that

4 2, W, = W, =0. (5.15)

This, of course, was expected in view of (5. 4) and the
definition of W,(7):

W, (7) = lim E{|B ,(1/€2)I2},
>0

W_, (1) = 1m(1) E{lA,(r/e®)P}, p=1,2,...,n.  (5.16)
(24

It also follows that the energies W, + W_,, p=1,...,#,

satisfy the following system of kinetic equations:

d A

7 W, + W) = E Q, (W, +W_ )+, (W, + W_,),

p=12...,n, (517

Q=1 fow [cos(k, + k,)o + cos(k, — k)olp,, ., (0)do,
p#=gq, (518)

épp == épq’ (5.19)

a=p

n
=2 L7 costk, + £g)opyg pe(0)do = 0. (5.20)

These kinetic equations constitute the main result of
this section.

The interpretation of equations (5.17) is different from
that of (4. 12) because (5. 17) are not conservative, that

iS,E:=1(Wp + W_,) is not a constant. Upon summing on
p in (5.17) we obtain

g; (Z) W, + W_p)> = PZ=)1 y(Wy + W) (5.21)

p=1
Note that the sum on the right side of (5. 17) does not
appear in (5. 21). Let

y = max {’yp} (5- 22)

1=p=n

Since the W, + W_,, p=1,...,
have

n,are nonnegative we

d F n n
d—7<p§1 W, + W_p> <y Z} (W, + W_,) (5. 23)
and hence
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n
Z Wy + W) = cer, (5.24)

where ¢ is a constant depending on initial conditions.

If we introduce dissipation in the system (5. 1) by adding
on the left side the term 2¢28(dz,/dt), B> 0, then, after
a computation similar to that employed prev1ously,
obtain for W, + W_, a system of equations identical w1th

(5.17) excepf that yp is replaced by v, — 8. Thus, in the
case where dissipation is present, (5. 24) leads to the
estimate

n
2 (W, + W_,) = cer 9, (5. 25)
p=1
From (5. 25) we deduce a stability condition
B=vy, (5. 26)

which generalizes the result of Stratonovich!2 for the
single random harmonic oscillator. By stability we mean
here that the total average energy 2., (W, + W_,)isa
bounded function of 7.

Of more interest is, however, the explicit way in which
(5. 17) expresses the mechanism of energy transfer
among the oscillators. It is considerably more compli-
cated than the corresponding result of Sec. 4.

6. SCHRODINGER EQUATION WITH RANDOM
POTENTIAL

Let y(f,x), x € R”, denote the wavefunction satisfying

the Schrodinger equation

t= Oy l»D(ny) = ll‘/()(x))
i=v—1.

in = %[A + E’J'(t,x)]lpy
6.1)
Here A denotes the Laplacian in R”*,and u(t,x) is a sta-

tionary random process with mean zero. We denote the
ensemble average by E{ }. Thus

E{ut,x)} = 0, (6.2)

E{ult,x)u(t + s,x + &)} = p(s, £). (6.3)
We also assume that

fult,x) =1 (6.4)

almost surely.

Let us transform (6. 1) to momentum space. We define
the Fourier transform of y by

7, 1 ipeX .
VD) = gy Jun BTV R (6. 5)
hence
1 -ipex
wit,x) = @ fRn e”ip= (¢, p) dp. (6.6)

On multiplying (6. 1) by eiP-X/(2m)"/2 integrating over
R7,and using (6. 6), we find that

if, =— 329 + be [ (@ [, e ®@PIEu(t, x)dx)
x Y(t,p)dp’. (6.7)

The quantity in the braces in (6. 7) represents a distribu-
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tion-values stochastic process since for stationary pro-
cesses the Fourier transform exists only in this genera-
lized sense. p2 denotes the squared modulus of the
momentum p. Define v(¢,p) by

v(t, p) = e"iP*/2y(t,p). (6. 8)

Then from (6. 7) we obtain

_ 'e‘iﬁzt/z . . .
vl p) =€ fnn(‘“;—@gn— Jon €@ "u(i,X)dxe”qW)
6.9)

x v(t,q)dq.

To simplify the notation, we shall denote the quantity in
braces in (6. 9) by (¢, p,q) and omit R” in the integrals
throughout.

Let * stand for complex conjugate and define v({,p, p’) by

y(t,p,p") = v, p) v*{,p’). (6.10)

Differentiating y with respect to ¢ and using (6. 9), we
obtain the equation

y:(t,p,p") = € [ i, p,a)y(t,q,p")dq
+e [ B¢, p,a)y(,p,a)da’,

y0,p,p") = Yo @ @) = v, @, ). (6.11)
We shall also write (6. 11) in abstract form
ye=€(@(t) ® I+ 19 g*1)y = eV(t)y, 0) =y,
y=v ® v¥ (6.12)

We now proceed by applying to (6. 12) the result stated at
the beginning of sec. 3.

As before, the remarkable fact about this result, in con-
nection with (6. 12), is that it yields a closed equation for

W(r,p) = w(r,p,p) = lim E{|y(7/¢%,p,p)|2}, (6.13)

the diagonal part of the tensor w. W(r,p) is the expected
value of the probability density in momentum space in
the limit of small fluctuations and long times.

The details of the calculation of V are very similar to
the previous ones and so we shall omit them. One very
important difference here is the strong use we make of
(6. 3), the translation invariance in space of the covari-
ance p(s, £). In the discrete case this played no role, of
course. We also assume that

L7 oplo, £)do < o,

o £t € R».

{6.14)

The result is that W(7, p) satisfies the conservative
transport equation

w.(r,p) = [ [Qp, 0 W(r,q) — Q(p,a) W (7, p)]da,
=0, WO,p) = |¥,p)2,

5 1=l 1 (62 —4q%)0
(p,a) =3 fo [(Zﬂ)" J cos( >

(6. 15)

+ - p)-&)p(o, E)d-s] do  (6.16)

This is the main result of this section.
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Let us make the following observations concerning (6. 15)
First the kernel € is nonnegative (because it is the
space~time Fourier transform of a covariance); so
(6. 15) is indeed a transport equation, and

J w(r,p)dp (6.17)
is manifestly independent of 7. If we normalize the inte-
gral (6.17) to equal 1, then W(7,p) can be thought of as a
probability density of a continuous time Markov process

with values in R”?, These results are analogous to those
of Sec. 4.

When p(0, £) is a product of a § function in o and a
covariance function in &, then @(p,q) is a function of

P — q only and (6. 15) coincides with a result of Dolinl?
and Klyatskin and Tatarskii.!$8

Besieris and Tappert!9 have recently obtained further
generalizations of (6. 15), and they have also explored
other aspects of the problem of this section.

7. THE KLEIN-GORDON EQUATION WITH RANDOM
PLASMA FREQUENCY

We shall consider here the real-valued scalar field
u{t,x), x € R", satisfying the equation

e — Au + [m2 + ep(t,x)]Ju =0, =0, u0,x) = uyx),

u,(0,%) = ity(x).  (7.1)

We adopt again (6. 2)-(6.4). m?2 is the expected value of
the plasma frequency, a positive constant. Equation (7. 1)
arises, of course, in contexts other than plasma physics
but we shall adhere to this application for concreteness.

Let #(¢, p) denote the Fourier transform (6. 5) of u(l,x).
P € R” is the wavenumber vector. From (7.1) we obtain

u, + 12(p)u
ef(l J e, x)dx) i, dg = 0, (1.2)
@y

1(p) =+ Vp2 + m2. (7.3)

Next we introduce the normalized complex valued ampli-
tudes A (¢, p), B(t,p) by setting

u(t,p) = 1'172(p) [e?? @t A, p) + e P)B(, P)], (7. 4)
u,(t,p) = i 1/2(p)[et WA, p) — et PNB(, p)]. (7.5)

Then, as in Sec. 5, we obtain the following system for A
and B:

At(t’ p) A(t’q)
=€ f X(t,p,q) dq. (7.6)
B,(tp) B(t,q)
Here X(t,p,q) is the 2 X 2 matrix
e=iliP-1(Dlt  -ili(P)+1(]t
p(t 7.7
u ’p’q)<_ei[z(p)+l(q)]t _ei[l(p)-l(q)]t> ’ ( )

i, p,q) = I'V2(p) [i/2@n)] [ eiadxu(, x)dxl1/2(q).
(7.8)

The system (7. 6) corresponds to (6. 9). By taking tensor
products we can obtain here also the analog of (6.11) or
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(6.12). Then we may apply the result stated at the be~
ginning of Sec. 3 and obtain closed equations for

W A(7,p) = Lim E{lA(r/e2,p)| 2}, (7.9)
Wg(7,p) = lim E{| B(1/€2,p)| 2}, (1. 10)
=0
If we assume that the covariance p satisfies
plo, &) =plo, — &), (7.11)
then we obtain a transport equation for
W(T7 P) = WA(T’ p) + WB(Ti p) (7- 12)
as follows:
w.(r,p) = [ [@(p,a)W(r,q) — @(p, )W (7, p)]dq
+y(PW(r,p), (7.13)
Lo @] B
ep =1 | [ o (eosllie) — )l
+ (p—q)E}
+ cos{[I(p) + U)o + (p — @)-£])
x p(o, E)YdEdo (7. 14)
e Y@
y(p) = J <f0 J e cos{[I(p) + 1@)]o
+ (0= Q) tlo(0, )dtdo) dg.  (1.15)

PAPANICOLAOU

The nonconservative transport equation (7. 13) in wave-
number space is the main result of this section.

From the definition of A(t,p) and B(t,p) we find that

W(r,p) = lim E 3 L [ﬁ%(l, p) + ZZ(p)azwez,p)] 2
=0 Zl(j)) €2
(7.16)

Thus, W(7, p) is the normalized average field energy
density.20 We have remarked already that the transport
equation (7. 13) is nonconservative. This is due to the
presence of the term involving y(p) which is nonnegative
for all p € R*, Equation (7. 13) is in fact quite analogous
to (5.17). In order for the total average field energy to
remain bounded as a function of 7, we must introduce
dissipative terms of order €2 in (7.1) as we did in (5. 1).
For example, if we introduce the term 2¢2pu,(f, x) on the
left side of (7.1), 8 constant, we obtain the stability con-
dition

8> y(p)

This condition implies that f W(r,p)dp is a bounded
function of 7.

for all p € R~ (7.17)
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Noumenon: Elementary entity of a new mechanics
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If the postulate of symmetry on which special relativity is built is rejected, a generalization of the relativistic notions of
event and space-time can be proposed. The generalization leads to the notion of noumenon. The noumenon possesses a
handedness; it is a seven-parameter entity obtained by associating with an event the angular momentum corresponding to
a particular evolution of that event. The noumenon is defined in the complex extension C, of space-time Rq. The main
purpose of the paper is to prove the acceptability of the new concepts when confronted with experimental results which
are generally regarded as supporting the classical theory of relativity. The potential fruitfulness of the new concepts is
shown by a short review of similar ideas developed independently by several authors in different fields of physics: A
Maxwellian theory of gravitation is developed; interactions between gravitation and electromagnetism appear, which have
common characteristics with weak interactions; and it is suggested that the extra degrees of freedom of the noumenon

are related to the quantum numbers of elementary particles.

1. INTRODUCTION

Physics, mathematics,and mechanics are three comple-
mentary domains of science. Physics is the science
treating of the material world and its happenings;the
role of physics is to discover the laws describing the
relations between happenings. Mathematics, starting
from a minimum set of axioms, creates abstract en-
tities and then studies all exact relations existing be-
tween these mathematical beings. Finally, mechanics
is ultimately the mapping of physics into mathematics.
From these short definitions, the role of mechanics
appears to be twofold: choice of an elementary physical
entity and choice of a mathematical being which the
physical entity can be associated with.

According to this general scheme, relativity theory
(special or general) is conventionally developed on the
following two postulates: (1) The most fundamental
physical entity is the time point or event and (2) space-
time, the set of events,can be mapped one-to-one into
the set of 4-vectors of a four-dimensional manifold.
These basic hypotheses introduced in the early 1900's
by Lorentz, Poincaré, Einstein, and Minkowski have
proven so fruitful that they may seem impossible to
challenge. In fact, however, further evolution of physics
has shown that they apply only to the macroscopic world;
they do not apply directly to microphysics. De Broglie
(1923) suggested that particles behave like waves in
space-~time, Heisenberg's mechanics (1925) rejected

the classical notion of position and trajectory,Dirac's
theory (1928) showed that spinors play a more fundamen-
tal role in nature than vectors do.

The thesis sustained in this paper is the following: The
success of relativity theory does not prove the ultimate
validity of the relativistic mapping, as defined above.
The numerous experimental “verifications” of the
classical theory prove a more general property: the
fundamental role played by the Lorentz-group in nature.
In particular, corresponding to the more fundamental
spinor representation of the group a new representation
space will be mathematically defined. By inverse
mapping onto physics, a new concept of universe will

be proposed, as well as the definition of a new funda-
mental entity: the noumenon. The term is borrowed
from Plato and Kant; it means thing-in-itself in contrast
to the “ phenomenon” or thing as it appears to us. These
new concepts will be regarded as a generalization of the
classical notions of space-time and event.

The Lorentz-group? is homomorphic to SL(2, C),the
group of unimodular 2 X 2 complex matrices. SL(2,C)
has two self-representations D120 and DO /2 the rep-
resentation spaces of which are, respectively, a two-
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dimensional complex space and its complex conjugate.
The elements of the representation space are two-com-
ponent spinors belonging to the Minkowski-space R ,;
they are each treated as a column matrix. The proper
Lorentz-group corresponds to the D1/21/2 representa-
tion of SL(2,C);the elements of the representation space
are spinors of order two of R,. The classical relativis-
tic formalism is based on the isomorphism between
spinors of order 2 and 4-vectors of the Minkowski-
space.

As early as 1911, another equivalent formalism had
been discovered,? which has the advantage of display-
ing particularly well the relation between the represen-
tations D1/2 1/2 and D1/20 DO 1/2; 1t is the biquaternion
Sormalism. As will be discussed in more detail in the
next section, the ring of biquaternions is isomorphic to
the ring of 2 X 2 complex matrices. In the correspond-
ing formalism, an event observed in two Galilean frames
k' and K is mapped into two biquaternions m’ and M,
which transform under a Lorentz-transformation accord-
ing to

M~ m! = t+Mx*t", (1)

where f and its complex conjugate {° are biquaternions
of norm unity, i.e., are, respectively, elements of the
representations D1/20 and D0 1/2 of SL(2,C). It will be
shown that ¢ can be chosen such that { = ¢°, The entity
mathematically defined by the biquaternion:

m=1txM or wm =Mxl (2)

will be mapped into a new physical entity possessing a
handedness: the noumenon. Noumena are defined in the
space of 2 X 2 complex matrices, which will appear to

be the complex extension C, of space-time R,.

Then the biquaternion mapping is generalized in two
steps. First,a restricted definition of the physical con-
cept of event is proposed: In a frame K an “event” is a
Jixed point at a given time. Second, the biquaternion
mapping is redefined as follows: An “event” defined in
a frame K is a noumenon in any other Galilean frame
k,and not an “event” as assumed in classical relativity
theory, The ultimate validity and the implications of
the biquaternion mapping are discussed.

2. BIQUATERNION ALGEBRA-NOTATIONS

Biquaternions3 are hypercomplex numbers of order 8.
The biquaternion algebra (Pauli algebra) is the Clifford
algebra? of order 3. The three unit-vectors, on which
the algebra is built, can be represented by the three
Pauli matrices 0. Consequently a biquaternion ¢, noted

q=190,9, (3)
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can be represented by the 2 X 2 matrix ¢:
q =4yl + q*0, (4)

where I is the unit matrix and where the four compo-
nents ¢q,,q may be complex. Accordingly,the biquater-
nionic multiplication * is defined by

q*Q = (q(),q)*(QO,Q)
=(q9Qp t 4°Q, 9@, + 7,Q + iq A Q). (5)

For a biquaternion g, one has the following definitions
and the corresponding properties directly derived from
Eq.(5):

The g conjugate of ¢ is the biquaternion g:
q= (qo,—(I)- (6)

The ¢ conjugation is an anti-automorphism of the ring
of biquaternions

g*Q = Qxq. (7
The ¢ conjugate of g is the biquaternion ¢":
g’ = (q3,9°), (8)

where the dot denotes the complex conjugate. The ¢
conjugation is an anti-automorphism of the algebra

(q*Q) =Qxq". (9)

The gc conjugation is an automorphism5 of the alge-
bra

@+Q) =q'+qQ". (10)
The norm of ¢ is the generally complex scalar N(g):
N(g) =q+3 = g3 — 4 = g*q. (11)
Note that with the matrix notation of Eq. (4),
N(q) = det(qyI + q-0). (12)

It results from Eq. (7) or Eq. (12) that the biquaternion
algebra is normed:

N(g*Q) =N(q)N(Q). (13)

The inverse of a biquaternion g(nonzero norm) is the
biquaternion ¢71:

g1=¢q/N(q).

Any biquaternion g of norm unity can be written as
the product of two biquaternions of norm unity:
q = txr (14)
with

t = (cosha,t sinha), and ¥ = (cosd, ir sing),

where o and 6 as well as the unit-vectorst and r are
real. Note that r is a quaternion® and that

t=t, = 7Fat, (15)

3. BIQUATERNION MAPPING-LORENTZ
TRANSFORMATION

Let M, be a point in a Galilean frame of reference K.
We can measure the coordinates X of the point M from

J. Math. Phys., Vol. 13, No. 12, December 1972

E. Y. ROCHER

the origin O of the frame K by using the ‘“Gedanken-
experiment” suggested by Einstein (1905), i.e., by ob-
serving the round trip time required by a light pulse

on the path OM;,0. Then consider the physical entity

I represented by the same fixed point M o at a given
time X, defined with the same techniques; this happening
IR is considered in K as an event M and is represented
by the biquaternion M with four real components:

M —> M = (X4, X). (16)

Note that according to Eq. (11) the norm of M is real
and equal to the square of the length of the 4-vector
Xy, X in space~time.

Now let k’ be another Galilean frame. Classical relati-
vity theory requires 9 to be considered as an event in
k’,i.e., 9N must be represented in k' by a biquaternion
m’ having four real components:

k,
M ——=m’ = (xp,x'). am

To fulfill the condition of reality, taking Eq. (9) into
account, the linear relation between the biquaternions
M and m’ must have the form

M-=m'=qxMxq" =m'", (18)

where the norm of ¢ must be unity® for m’ and M to
have the same norm (Lorentz transformation). Via
Egs. (14) and (15), the transformation defined by Eq. (18)
can be written

M- m' = txrsMx7r*t (18)
For t =1 (i.e.,a — 0),the transformation equation (18’)
reduces to

M — M =rxMx7v, (19)

which represents a spatial rotation — 26 of the frame K
around the vector r (Hamilton—1853). Consequently when
the coordinate axes of k' and K are parallel, the trans-
formation equation (18) can be written

M = m' =t+M+t, (20)
where

¢ = (cosha,t sinha) = ¥ (1,8) (21)
with

y=(1- 82712,

By developing Eq. (20) according to Eq. (5), one gets
directly the vectorial expression? of the Lorentz trans-
formation

Xo| (¥ =v(Xo + B*X)
) (X8 (. , (22)
X |x=X+8 s =D FyXo),
where B’ is the velocity of the frame K in k’:
B =28/(1 + B2) (23)

and
y = (1 g2y,

In particular, we note that Eq. (23) shows that the velo-
city B is relativistically twice the velocity 8.
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4. THE NOUMENON

Equation (20) shows that the Lorentz transformation is
performed in two steps, in two possible ways according
to the schemes:

m = itxM

AN

m = Mxt

m’ =mxt =txm’, (24)

We call the entity mathematically represented by the
biquaternion m (or #2") a noumenon® and, more precisely,
a left-noumenon (or a right-noumenon) to express the
noncommutativity of the biquaternion product. The com-
ponents x, X of the noumenon m are complex, and the
norm of the biquaternion m is real and ¢ invariant
according to Egs, (13) and (21);thus, the noumenon de-
pends on seven parameters:. The noumenon is a more
fundamental entity than the event; it carries in itself

the information pertaining not only to the position of the
happening 9, but also to the evolution (velocity) of that
happening; furthermore, it permits attribution of a han-
dedness characteristic of the evolution of the happening.
This last property will be discussed in more detail in
the last section.

By developing the relation m = t*M we obtain the ex-
pressions of the four complex components of the nou-
menon #:

XO} -_){xo = Y(XO + ﬁ 'X) (25)
X x =yX +B8X, +iBArX)

Comparison with the classical expression (22) of the
Lorentz transformation shows a remarkable similarity:
The transformation formulas for the time component
and the componenl in the divection of the motion have
the same form. The noumenon m (or m') can be consi-
dered as defined in the complex extension of the frame
k in which the velocity of K is 8 and in which the velo-
city of k’ is — B, according to the concluding remark of
Sec. 3. Since the direct “verifications” 9 of the classical
theory of relativity were precisely designed to check
the transformation formulas for the time component
and the component in the direction of motion, we raise
the question of the ultimate validity of the relativistic
mapping, and we propose a more fundamental approach.

For that purpose we will restrict the classical notion
of event as follows: In a frame K an “event” 10 js a
fixed point at a given time. An “event” is represented
by a biquaternion M with four real components. The
generalized biquaternion mapping can then be redefined
as follows:

An “event” defined in a Galilean frame K is a nou-
menon (left or vight) in any other Galilean frame of
references and not an event as assumed in the
classical theory of relativity.

This hypothesis can be interprefed as follows: When
observing in the frame k the “event” M defined in K,
the result of the measurement gives

(1) the four coordinates of M in k;they are taken as the
real parts xy, X  of the components of the noumenon m
(in classical relativity theory they are taken as the
components of the “event” m' in k’) and
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(2) the components B of the velocityl! of M in k.

From Eq. (25) the noumenon m is the seven-dimensional
happening

K
M —> m = (%y,X, = iBAX,). (26)

In classical terms,the noumenon is obtained by associat-
ing with an event the angular momentum corresponding
to the evolution of that particular “event.” Reciprocally,
given a noumenon and its handedness the immediate
evolution of the corresponding “event” is well defined
by Eq. (26). Thus, the new entity contains a dynamic
property which characterizes the existence of the physi-
cal being it refers to; indeed, existence supposes some
extension in space-time: The term noumenon is used
here in a sense close to the sense of thing-in-itself
given by the Greek philosophers and by Kant in his
early works. Since physics is the science of existing
beings it can be expected that it will be more fruitful to
build a mechanics on the existential notion of noumenon
instead of on the static notion of event.

The noumenon is defined in the complex extension C,

of R,: Under the biquaternion mapping, the universe has
to be considered as a complex four-dimensional mani-
fold. In particular, it appears that this concept, inspired
by Dirac's formalism, leads us to replace the classical
concepts of position and trajectory, rejected by Heisen-
berg's mechanics, with more generalized concepts,
which will be shown in the next section to be compatible
with experimental observations.

Further examination of the transformation ¢ defined in
Eqgs. (25) shows that the formulas differ from the classi-
cal formulas for the components normal to the motion:
First by the presence of the complex term and second
by the dilatation factor y. This last remark seems to
indicate the possibility of a direct test of the theory,a
test in which the lateral dilatation could be evidenced.
Interpretation of the Michelson experiment (1881) will
show the difficulty of the task.

In the classical interpretation, when considering the
negative result of the Michelson experiment from a
frame k attached to the Sun, it is supposed that the
length of the north-south arm of the interferometer is
not affected by the motion of the Earth, only the length
of the east-west arm is contracted. In the present
theory the classical interpretation applies also to the
EW arm. For the NS arm,let E = (0,0) represent the
emission of a light pulse used in the Michelson experi-
ment and let R = (X, X) be the reflection of the light
pulse at the extremity of the NS arm, as measured in
the frame K attached to the interferometer. The norm
of R is zero. In a frame k attached to the Sun, the cor-
responding noumena are ¢ = (0,0) and ¥ = (x4, Xx). The
norm of ¥ is zero since » = /+R; furthermore, since x,
transforms as in the classical theory, the length |x| of
the trajectory of the photons used in the experiment is
the same as in the classical case;the same conclusion
applies for the return path. Consequently,as in the
classical case,an observer in the frame attached to
the Sun arrives at the same conclusions as an observer
attached to the interferometer: The NS and EW light
paths are equal.

The result was expected, because both theories are
based on the same postulate: The measure of the velo-
city of light is independent of the frame in which the
measurement is made. Translated into mathematical
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terms, Lorentz transformation and ¢ transformation

are representations of the same group SL(2,C). For
the same reason the law of composition of parallel
velocities is the same in both theories;a second-order
difference appears for the composition of nonparallel
velocities. The main difference between the two theories
is in the definition of the distance between two points
(events or noumena) in space~time (real or complex),
i,e., in the choice of the metric. In conclusion, a direct
test of the theory should be a test of the definition of the
metric. The test performed in a frame k would consist
of observing a fast-moving object of known transverse
dimensions at rest in K(Y, Z), and in checking that in k
the object appears dilated (v, = yY,z, = yZ).

An indirect method to establish the validity of a theory
is to prove its fruitfulness, The next section develops
some elements of a unitary field theory in the complex
space-time C,, and, in particular, it introduces the con-
nection between the biquaternion mapping and the work
on quaternion-factorization of the metric of general
relativity as initiated by Einstein (1929) and redeveloped
more recently by Bergmann (1957) and Sachs (1968).

5. FIELD THEORY IN THE COMPLEX UNIVERSE C,

Shortly after publication of Dirac's paper, several
authors tried to introduce hypercomplex numbers in
mechanics. In quantum field theoryl2 the quaternion
formalism appeared particularly well adapted to the
two main relativistic field theories: Maxwell's theory
and Dirac's theory. In general relativity,13 a quater-
nion factorization of the metric offered the possibility
of generalizing to electromagnetism the geometrization
of gravitation, Ever after,these ideas have been further
developed by many authors, but have generally looked
too artificial to become fruitful, We shall show how the
concept of noumenon, elementary entity of a complex
universe, offers a simple and natural approach to unify
the different branches of mechanics.

A. The quaternionic propagation operators

To describe the properties of the representation space
C,, it is necessary to introduce a differential operator.
In the present context it is natural to define the linear

biquaternion operator

P = (aXO, BX), (27)
where
0y = i = 9 + 7 0 s
7 BXJ. 8er aXc].

where X ;. and X, are the real and complex parts of the
complex coordinate X in the frame K. The ¢ conjugate
of P is written P and 1is defined by

D= (aXo,_ ) (28)

By definition the operators P and P operate on biquater-
nionic functions placed on their right-hand side.14 Suc-
cessive applications of the operators P and P give the
scalar complex operator (J:

PxP= 32X3—82X2= & = p+P, (29)

Consequently, the operators P and P appear as propaga-
tion operator in C, defined in the frame K.

Similarly, in a frame k the propagation operators are
defined by
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p=(0,,8), B=0,,-2) (30)

Via Eq. (25) the relations between the operators p and P
are

P—=p=Pxt, P —>p=1LxP (31)
Consequently,
p*p = PP, (32)

The scalar propagation operator [J is ¢ invariant,

Let & = (¢,,®) be a biquaternion function defined at
each point in C,. Supposing the potential & differentiable
in C4,then the propagation equation of a wave propagat-
ing at speed ¢ = 1 in C, can be written

& =R. (33)

This second-order equation can be replaced by two
coupled first-order equations

P*xd =F, (34)
P+ F=R. (35)

Under a ¢ transformation the density R transforms
according tolS

R— 7 =Rsxt. (36)

Consequently, since in Eq. (33) the operator I is ¢ in-
variant, & transforms according to

& ¢=d*t (37)
and N
F— f =txF*¢ (38)

to assure the ¢ covariance of Egs. (34) and (35). Note
that F transforms like F:

F > f=t+F*f (39)

Consequently, the scalar part of the biquaternion field F
is ¢ invariant.

If, now, the operators P and P are defined in R, instead
of C,,i.e.,they are restricted to the real components,
then the scalar operator [J is real, and since O is in-
variant, it is also real in any other frame k. If the po-
tential & is complex, the propagation equation (33) will
split into two uncoupled equations

0%, =R, 0& =R, (40)

between the real and complex part of ® and R. A coup-
ling will appear between the first-order equations (34)
and (35).

B. Maxwell equations-Maxwellian gravitation

The preceding results can be applied to electromagne-
tism in R,. First consider the equations of electrosta-
tics in K. Let & = i®, = #(V, 0) be the electrostatic
potential, and let R = iR, = (R, 0) be the charge density.
Then the second equation (40) is Poisson's equation in
K, Eq. (34) defines the electrostatic field E:

F = P*&=i(d,V,— gradV) = (0,{E), (41)
and Eq. (35) is the expression of Gauss' theorem

P+F = (i divE, 0) = (iR, 0). (42)
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Finally, the density of electrostatic energy must be a
quadratic invariant under charge conjugation,i.e., under
¢ conjugation for reasons which will appear more
clearly later:

W=F+«+F =W = (E2,0) (43)

The equations in a frame k are obtained by a ¢ transfor-
mation according to Eq. (37):

¢ = i(’l},— a),

f =b+¢ =i(dyv + diva,— 3,2 — gradv + ¢ rota)
= (O,ie—h),

(44)

(417)

where the scalar equation (Lorentz-condition) is deduced
from Eqs. (38),(39),and (41).16 In the frame k Eq. (42)
gives

(¢ dive — divh, i(3,e — roth) — (3 ,h + rote)) = (ér,— ).

(42')
When considering from k another source attached to a
frame K’ similar equations are obtained; since they are
linear they can be added without changing the form of
Eq. (42'). Then Eq. (42') splits into two scalar and two
vector equations, which are the four Maxwell's equations
(1864).

Finally,the density of electromagnetic energy is given
by the C-invariant biquaternion

w=fxf = (2 + h2,— 2ie A h), (43')
where one recognizes the classical expression of electro-
magnetic energy density associated with the Poynting
vector,

These results can be applied to calculate the equations
of motion in C, of a charged particle (mass u, charge €)
in an electromagnetic field. Taking Lorentz's approach
as a first approximation, the equation of motion in a
Galilean frame K, in which the particle is at rest at a
given time, reads

dzmM
ds?
In another Galilean frame k, we get after left multiplica-
tion by ¢ and according to Eq. (38):
d2m .
B— = — i€f xt,
ds2

the real part of which gives the equations of the motion
observed in R :

= — ieF. (45)

(46)

SA @ - €e-p,
dx,

k: d dx,\
?“d70< dx_())_ €(e + B A h).

\

(47)

These equalions ave the classical relativistic equations.17?
This important result has two consequences: (1) It
assures the compatibility of the proposed theory with the
most important class of experiments supporting the
classical theory of relativity—the experiments involving
the interaction of a charged particle with an electromag-
netic field, and (2) it is a first example showing the
acceptability of the new notion of complex trajectory.
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Another particular case of the field equations (33)—(35)
isd =&, =(V',00and R =R, = (R’,0). It is obtained
by replacing the charge € by u = i€. Consequently
Coulomb’s repulsion transforms into an attraction, New-
lon's attraction as we will assume. Under this hypothe-
sis the real part of the complex wave ® becomes the
gravitational potential,the complex part being the elec-
tromagnetic potential. The quantities related to a gra-
vitational origin will be represented with a prime.
Equations (41)-(42") apply up to the factor i. The den-
sity of gravitational energy is given by the C-invariant
biquaternion

wl=~f’*f"= (_ e’z—h’z,Zie' /\h’). (43/!)
We will discuss in the last section some of the implica-
tions of the preceding hypothesis.

Asg in the electromagnetic case, the notion of complex
trajectory of a massive body in a gravitational field can
be shown to be acceptable, We are referring here to the
interpretation of the three “tests” of general relativity.
In fact Schiff!® has shown that among the three implica-
ted effects, at least two can be interpreted simply by
introducing the principle of equivalence into special
relativity, Adapting Schiff's method to the new theory
gives the same interpretation of the gravitational red
shift and with a somewhat simpler algebra, due to the
introduction of the transverse dilatation, gives the con-
ventional expression for the deviation of photons by a
gravitational field. The third effect concerns the ano-
malous part of the perihelion precession of planetary
orbits (only observable for Mercury); it is considered
as characterizing the Riemannian structure of space-
time. Recently, searching for the expression of this
third effect under the assumption of a biquaternion-
tactorization of the Riemannian metric, Sachs1® has
found the same expression of the perihelion precession
as found under the conventional hypothesis of a sym-
metric metric tensor. This formalism leads, as expec-
ted,13 to a unitary theory of electromagnetism and
gravitation, which has common characteristics with the
proposed field theory in C,.

At the flat space limit of Sachs' approach, the differen-
tial interval in R, is mapped,as in Egs. (3), (4), into a
biquaternion ds:

ds = (dxg,dx) = o, dx, (48)
the norm of which is the classical invariant ds2. In the
presence of a field, the o, are replaced by another set
of four field dependent biquaternions ¢,. The correspon-
dence with the metric tensor is then defined by
g™ <> —3(g"*q" + q¥*qr) = — Sc(qt*g*) (49)
where Sc(q) refers to the scalar part of biquaternion q.
The g, are determined by four metric field equations
analogous to Einstein's field equations (1916):
5(Kp>\q>‘ + qug)\) + %qu = Xsp’ (50)
where Kp)\ is the “spin curvature” and R the scalar
curvature of the Riemann space and where the biquater-
nions § | characterize the source field. By proper com-
bination of the field equation and its ¢ conjugate, two
tensor equations are built: The symmetric-tensor part
(scalar part) leads to Einstein's original theory of gra-
vitation, the antisymmetric-tensor part (vector part)
leads to Maxwell equations.20 With this approach, gra-
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vitation and electromagnetism receive a similar geome-
tric interpretation, suggesting that both fields can be
combined in a unique entity as we have done in Egs. (40).
However, our approach is very different in a basic and
in a formal aspect: Equations (40) are defined in a flat
space and we do not try to resymmetrize the formalism,
as is done in Eq. (49); indeed, once the difficult concepts
of noumenon and of complex space-time are accepted,
the necessity of symmetrization does not appear. Never-
theless, some problems appear in the field theory when
considering the interaction between electromagnetism
and gravitation, They will be discussed in the last sec-
tion.

C. Discussion-further developments
In the general case the potential ¢ is complex:
¢ = (v + iv,— c(@@’ + ia)), (51)

where the speed of light ¢ has been introduced to use the
MKSA system. The biquaternion field defined by Eq.(34)

is 7 = (0, ie” — ch”) with21
e” =e+ ch’, (52)
ch” =ch—¢’, (53)

where, following the electromagnetic model, a general-
ized principle of equivalence between radiating and gra-
vitating masses is assumed, i.e., with

66 = 1/}1602 = 1/4TTG (54)

(G = gravitation constant). Contrary to the potential
wave equation (33),the field equations (34) and (35) show
a coupling between gravitational and electromagnetic
fields. The coupling is very weak and can be evaluated.
For example, Eq. (52) shows that a rotating mass creates
a girogravitational field h’ which is equivalent to an
axial electric field. In the case of the Earth this field
can be calculated adapting classical formulas of electro-
magnetism. One finds at the center of the Earth

o = Ho B (55)

2r R3

where M’ = 7.1 X 1033 MKS is the kinetic momentum of
the Earth and R = 6.4 X 106 MKS its radius, Even in
the case of as large a massive body as the Earth, the
axial field is still very small:

ch’ =1.4 x 1075 V/m.

This field value compares favorably with the estimated
10"7 V/m electric field, the origin of which is still hypo-
thetical, necessary to explain the geomagnetic field.
This field creates in the core a small current (106 A/
c¢m?2) which by dynamo effect is responsible for the
Earth's magnetic field,

A basic difficulty appears in this simplified gravito-
electromagnetic interpretation of the wave equation (33),
when considering the inverse effect of an electromagne-
tic field on a mass. Solving the difficulty requires a de-
tailed analysis of the symmetry properties of the biqua-
ternion algebra; this analysis will be initiated here. The
preceding results have then to be considered as funda-
mental solutions of the field equations, to be recombined
to fulfill the proper symmetry condition,22

In Table I are gathered the elements of the discussion
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TABLE 1. Internal Symmetries of the Complex Universe C,.

Unit Vectors eq e; e, —ee, €153
Matrix Repres. I [ 7] ig; il
Unit Square +1 +1 -1 -1
@ Conj: [ + — - +

C Conj: (C) + + — —
QC Conj: (P) + — + —
Noumenon Xg, x, X, LT
Potential v’ a’ a v
Source v’ i j 7
Field 0 ch—e’ e + ch’ 0

of the correspondence between symmetries of the biqua-
ternion algebra and symmetry properties of the com-
plex space-time C,. The table is divided into three
parts. The first three rows define which one of the four
possible representations of the biquaternion algebra is
chosen for the biquaternion mapping;the next three rows
indicate which unit vectors are reversed under a given
conjugation; the last part shows how the components of
different physical entities are assigned to the unit vec-
tors.

@ conjugation is a complex space inversion or a complex
time reflection (— 7). Under a c¢ conjugation the electro-
magnetic potential and its source are inverted; ¢ conju-
gation appears as a charge conjugation (C). Finally, gc
conjugation is obtained by reversing the orientation of
the real space (P). According to this interpretation, the
product of the three fundamental symmetries C,P,and

T of the complex universe C, is CPT = — 1. Of particu-
lar interest here is the interpretation of the ¢ conjuga-
tion, Classically, charge conjugation interchanges par-
ticles and anti-particles. Referring back to Eq.(24) de-
fining the noumenon, right and left noumena are pre-
cisely ¢ conjugate of each other. The close relationship
between charge, handedness, and rotation appears par-
ticularly clearly in the proposed model of a complex
universe.

Up to here we have only been concerned with the macro-
scopic aspect of the formal possibility of a concept of a
complex universe. The macroscopic gravito—electro-
magnetic interaction, as defined by Eq. (55), has two
characteristics in common with the microscopic weak
interactions: order of magnitude (intermediate between
electromagnetic and gravitational) and symmetry [in
Table I the corresponding potential +/,a or v,a’ have
the rotation symmetry of a four-dimensional real Euc-
lidean space, i.e., SU(2) X SU(2)123], In fact, the re-
quirement for a generalization of the basic concepts of
event and space—time has always been even more press-
ing in microphysics than in macrophysics, probably due
to the availability of more powerful experimental tools.

The most precise need for defining an entity possessing
a handedness appeared with the experimental confirma-
tion24 of the Lee and Yang23 hypothesis of “parity vio-
lation” in weak interactions. The electrons created in
the decay of oriented radioactive cobalt nuclei emerged
all in the direction of the magnetic field, thus showing
that besides their momentum, moving electrons are-
characterized by an internal property: handedness. In
the present context electrons are mapped into left nou-
mena, anti-electrons into right noumena, The biquater-
nion mapping (26) is uniquely defined by natuve in this
case.

A broadening of the classical concept of space—time has
also always been strongly suggested in particle physics.
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The various internal characteristics of elementary par-
ticles (charge, baryon number, hypercharge, parity, -+ +)
are often considered?3.26 ag manifestations of extra-
angular degrees of freedom in some abstract space
(isospace, isobaric space, subquantized medium, - - -)
which is completely distinct from real space-time. In
the present formalism those extra-angular variables
are introduced in the general form of the transformation
biquaternion ¢ as defined by Eq. (14) and are given a
precise geometric meaning.

6. CONCLUSION

The essential characteristic of this generalization of the
concepts of space-time and event is its natural simpli-
city. The generalization is based on the renunciation of
one of the postulates on which the classical theory of
relativity was built, the postulate of symmetry. Instead,
a more involved algebra of space~time symmetries has
been introduced, the role of which appears to be essen-
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tial in any further development of the theory. The main
purpose of the paper is to prove the acceptability of the
new concepts when confronted with the classical experi-
mental results on which the classical theory is built.
The noumenon possesses two main characteristics: (1)

It has more degrees of freedom than the conventional
point-like event,and (2) defined as a point in the complex
universe it has a potential extension in real space-time.
In the last section a rapid review of similar ideas deve-
loped recently and independently in different branches

of physics shows the unifying properties of the new con-
cepts. The geometric interpretation of the added degrees
of freedom should lead to a better understanding of the
different forms of interactions. The potential space-
time extension built into the concept of noumenon con-
fers on the noumenon an intrinsic existence, which
should lead to a geometric approach to quantum field
theory, in agreement with the wishes of de Broglie, Ein-
stein, and Mie.

! See, for example, P. Roman, Theory of elementary particles (North-Holland,
Amsterdam, 1961), 2nd ed., p. 60.

2F. Klein, Phys. Z. 12, 17 (1911); C. Lanczos, thesis (1919) summarized in Z. Phys.
57,447 (1929).

*The term biquaternion algebra is chosen here instead of algebra of 2 X 2 complex
matrices for two reasons: (a) complex numbers and quaternions can be used to
represent rotations, respectively, in the plane R; and in space R;. The next
generalization in the family of hypercomplex numbers leads to biquaternions
(complex quaternions after Hamilton): Biquaternions will be used to represent
rotations in space-time. Note that the biquaternion algebra is the highest order
associative algebra with a quadratic norm. (b) The three auto- or anti-automor-
phisms of the algebra will be associated in the last section with the three basic
symmetries C, P, and T.

*D. Hestenes, Space-time algebra (Gordon and Breach, New York, 1966).

* With the notation of Eq. (3), a quaternion is represented by q = (qo,iq) where qo
and q are real. If the basis vectors were the basis vectors (ie;) of the quaternion
algebra, the qc conjugation would be a ¢ conjugation and, thus, an automorphism
of the algebra of complex quaternions, as it is.

©Up to a phase factor ei® which will be neglected.

7G. Hergoltz, Ann. Phys. (Leipz.) 36, 497 (1911).

#Note that, under a Lorentz transformation the biquaternion m (or m') transforms
like a pair of two-component spinors. Similar entities have already been proposed
in physics, but with a very different interpretation; for example, Penrose’s
twistors in J. Math. Phys. (N.Y.) 8, 345 (1967). (See in particular Ref. 5.)

“H. E. Ives and G. R. Stilwell, J. Opt. Soc. Amer. 28, 215 (1938); E. I. Williams
and G. E. Roberts, Nature (Lond.) 145, 102 (1940).

19%hen used in its restricted sense, the term event will be enclosed in quotation
marks,

"Note that the information concerning the velocity § of the “event” is always
available during the experimental determination of the position of the “event”:
Doppler effect, trajectory curvature ... Direct introduction of Planck’s constant
(1900) into the theory should then be made possible by noticing that the complex
part of the noumenon, which corresponds in classical terms to an “uncertainty,”
is precisely equal to the angular momentum of the “event.”

'2See C. Lanczos, Ref. 2, and G. Rummer, Z. Phys. 65, 224 (1930).

3 A. Einstein, Math. Ann. 102, 685 (1929).

“In the complex plane R, the operators P and P reduce to (dy +idy)and
(8, — id,). With the notations (30) Cauchy~Riemann’s analyticity conditions
are'written P - F = 0; when the analyticity conditions are not fulfilled in a region
of the plane, the equation P - F'= R characterizes the discontinuities of the
field, i.e., its sources.

'S An elementary volume d¥ can be defined in K by dV = dM, *dM, *dMj;,ink
by r*dV = t*dM, *dM, *I*{*dM; = dm, *dm, *dm, = dv. Thus, a density
transforms like dv' =dV " ¥,

16 Note that the norm of the biquaternion field f is the invariant: N(f) = f*f =
e? - h® + 2ie - h and in the particular case of a unique source, by comparing
with Eq. (43):e-h=0.

""With the classical approach the same definitions (27), (28) apply in a frame
K with the property (29) and with the same field equations (33)-(35). In k'
the transformation (20) leads to P’ —~ p' = t*P'*t [Eq. (31')], @' > ¢ = 1*d'*¢

[Eq. (37))] and, thus, F' = f' = p'*¢' = (*F'*{ = f [Eq. (38")] . The same relation
(45) applies in K, and in k' one gets after right and left multiplications by #:
w(d®m' [ds? ) = Re(ief "*r*f) = —Re(ief '*t") [Eq. (46')}, where Re(q) means the
real parts of ¢ and with ¢’ = r*£ = '(1,8") according to Eq. (23). The equations
of motion in k' (46) and in k (46) have the same form.

8L 1. Schiff, Am. J. Phys. 28, 340 (1960).

M. Sachs, Nuovo Cimento B 56, 137 (1970).

20M, Sachs, Nuovo Cimento B 55, 199 (1968).

! Quantities related to a gravitational (clectromagnetic) origin are represented
with (without) a prime.

# For example, the generalized Lorentz-condition can be considered as requiring
the biquaternion field to reduce to its vector part, i.e., to be invariant under time
reflection (7)), as will be discussed.

B, de Broglie, D. Bohm, P. Hillion, F. Halbwachs, T. Takabayasi, and J. P. Vigier,
Phys. Rev. 129, 438 (1963).

24C.S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, Phys.
Rev. 105, 1413 (1957).

*T.D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956).

2 For example, F. Halbwachs, P. Hillion, and J. P. Vigier, Ann. Inst. Henri Poincaré
16, 115 (1959); G. R. Allcock, Nucl. Phys. 27, 204 (1961).
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The problem of diffraction of a plane wave by an infinile array of parallel strips is attacked by the newly developed modified
residue calculus method. The solution is found in terms of an infinite set of zeros of an analytic function. The asymptotic
behavior of the set of zeros is specified by the edge condition, while the first several zeros are determined from a matrix
equation. The rapid convergence of these zeros to their asymptotic values is demonstrated through numerical examples. For
a given array of strips, it is shown that there exists a (otal reflection phenomenon at a critical frequency and incident angle.
This fact suggests the possibility of constructing an open resonator with an extremely sparse resonance frequency.

. INTRODUCTION

Diffraction of a plane wave by an infinite set of semi-
infinite parallel plates was first solved by Carlson and
Heins?! by the Wiener—Hopf technique. Later, Berz?2
attacked the same problem by the residue calculus
method.

Practical interest in this problem stems from the use

of the structure as a microwave lens to focus beams in a
desired direction or to produce multiple beams, and the
use of the structure as an artificial dielectric medium.3
In many such applications the plate length is in the order
of the wavelength involved. Therefore, it is of impor-
tance to study the diffraction properties of a set of plates
of finite length.

In the present paper, the problem is formulated in terms
of an infinite set of linear equations, which is solved by
the newly developed modified residue calculus method.

The same physical problem has been considered earlier
by Meister.4 He formulated the problem in terms of a
modified Wiener-Hopf equation and solved it by a
method developed by Jones.> Meister obtained only a
formal solution in the form of an infinite set of simul-
taneous linear equations from which it is difficult to ex-
tract useful numerical results. The advantage of the
modified residue calculus method used here over the
method used by Jones has been detailed elsewhere®-8
and will not be repeated here.

1. FORMULATION OF THE PROBLEM

The configuration of the infinite array of parallel strips,
which have no y variations, is shown in Fig. 1.

A TM wave which is incident from the left at an angle
6, with respect to the x axis, is given by

. ) 4 x
1y = 0t W
where the time convention e-i«! is understood and

z

FIG. 1, Parallel strip configuration.
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2p7 + ka sinéy

a, = I (2)
' (@ — kDV2,  if af = k2 (3)
By =
?—i (k2 —a2)V/2,  if 02 < k2 {4)

Due to the periodic nature of the geometry, the Floquet
theorem predicts that the scattered fields have a dis-

crete spectrum. In the three regions x < 0,0 < x < h,

and x = k they can be represented by

o .
2 A,e’re™’, forx=0 (5)

pa-eo

o0

2 <Bne'7"x + Cneynx)cos <ﬁ5_g) ,

Hy = n=0
for0sx=<h (6)
o0 .
> Dpemf’ze'ﬂl’(x_h), for x = h mn
p=-o0

where ‘

\+ [(mn/a)2 —Rk2)V/2,  if (nn/a)2 = k2
Y= (8)
| —i[k2 — n/a)2]M2,  if (n/a)? < 2

Our main interest is to determine the reflected and
transmitted fields, i.e., {4,} and {D,}.

We begin the solution by deriving a set of linear equa-
tions for {4 ,} and {D,} obtained by enforcing the conti-
nuity conditions of the tangential field components at

x = 0 and x = k. Fourier transformation of both sets of
matching equations and straightforward algebraic mani-
pulation resulis in

x 1 e 1 e
Us — + =0,
p:Z)cc(Bp ~Va * Bp + 7’;1) b (BO + Yn 'BO “7n

n=20,1,2,..., (9

where the symmetrical and asymmetrical components
U} and Uj are given by

(a,/ap)(A, + Dp) = U3. (10)

111, SOLUTION BY THE MODIFIED RESIDUE
CALCULUS METHOD

For the special case k — o, corresponding to an array
of semi-infinite plates, (9) can be solved by the conven-
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tional residue method, and such a solution has been
carried out by Berz.2 However, for finite » one has to
modify (see Ref. 6) the conventional residue calculus
method, as is to be detailed below.

The central step in the solution of (9) by the residue cal-
culus method is the construction of two meromorphic
functions of a complex variable w with specific pole—
zero configurations. The poles and zeros are chosen
such that contour integrals about a circle of infinite
radius in the complex plane generate residue series
which are identical to the left-hand side of (9).

Consider the integrals

1 1 SYh

21 C(”’ . we+ Y > fr(w)dw, (11)
i n n

1 1 PR

%(ﬁ (w —~ T w4 v )f(w)dw (12)

Here f* () and f-{w) are the functions mentioned in the
paragraph above, and C is a circle of infinite radius in
the complex w plane. The functions f*(w) and f- (w) are
required to satisfy the following conditions:

(1) 7*(w) and f- () are analytic everywhere except for
simpie poles at w = — f, and w = {g,} for p =
0,41,22 .

(2) f*(w) has geros at {I;}, which are yet unknown and
will be determined from the condition

frly,) e (=5 ) =0
forn =012 .

(13)

(3) f*Yw) and f-1(w) have algebraic behavior, explicitly
O(w-1/2), as |w| — «. This is to satisfy the edge
condition.

(4) The residues of /" (w) and f-(w) at w = — B, de-
roted by Resf " {— 3,) and Resf~ (— 8,), respectively,
equal one.

The integrals (11) and {12) are identically zero by pro-
perty (3). Evaluation of the integral (11) leads to

© 1 e’}’nh X
p—‘-[;oo Bp;c ')’ni }8[)+'}/n Resf (BP)

4 < —1 eﬁ”h )R i( )
Bo T v + Ry esf Bo

T -y B ok
+ [T ly) 2 e =y ) = 0.

(14)

Clearly, if properties (2) and (4) are satisfied, then the
residue series is identical to the left-hand side of (9).
It follows immediately that

Ut = Resf* (Bp). (15)
In the special case k - «, (13) becomes
frly,) =10, (16)

which means that f*(w) has zeros at w =, for n =
0,1,2,---. For finite &, the zeros are shifted from {y_}
]

1+ Bo/B)( + Bo/B.,)

M
(1 + 7:,‘1F; 33)
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to {I't} and {T';} in order to satisfy (13). It is impor-
tant to recall the fact that the edge condition remains the
same whether % is finite or infinite. This requires {I*}
to asymptotically coincide with {y,}; that is

lim T = v, (1
It can be shown® that (17) is consistent with (13). The
actual construction of f*(w) follows closely that in Ref.

4, 6-8 and only the result need be stated:

f‘(u’)zexp(_(w+50)a ln2> ( 2
m

w+ Bl —w/Bg)

(1 —w/TH) « 1+ Be/BIL+ Bo/B )1 —w/T%)
(1+8,/TH) "1 (1 —w/B )L —w/B. )1+ /T
{18)

It remains to evaluate the shifted zeros {F;} using (13).

It was concluded from the edge condition that for large
n, the shifted zeros {I'} coalesce with the unshifted
zeros. Then there exists an integer M > 0 such that
|T¢ —y,| is arbitrarily small for all n > M.

Thus, we need to solve only the first (3 + 1) equations
of (13) for {I:} while setting

I't =y, forn>M. {19}
Substituting (18) and (19) into (13) one has
¢ (w)
= {t =0,12,.... M, 20
¢i (_ w) — m?e m y 19 ’ ( )
where ¢*(w) and ¢~ (w) are polynomials in » with un-
known coefficients
. M w M NN
1) == —— = L oapk
¢ (w) = 1L {1 rt) 1+ Z}lFu (21)
n
and {#,} and {¢;,} are known constants and given ex-
plicitly by
(h — 2a 1n 2)
l*m = _t»m = T exp “Yw
w
p (1 _'Ym/lgn)(l _)’m/," n?
n:l(l + ym/ﬁn)(l + 'ym/ﬁn)
o L=y, /8,00 =y, /B )1+, /v,) o
X . (22)
7

wemet (L4 y, /BYL+ /B 00—y, /v,

Note that (20) is a set of (M + 1) linear equations for un-
knowns {F}}; similarly for jF’n]} . Once the {F:} are de-
termined, the shifted zeros {I't; follow immediately
from (21). (In actual computations, we need only ¢*(w):
hence, it is not necessary to find {T:} explicitly.)

The final step in the solution is to calculate the residues
in (15). The result is

© (1 - 50/7n)(1 + Bo/Bn)(l + BO/B-n)

— 284¢ In2\ M
= — exp( Po > 11
n

L (1= 8o/B)1 —By/B.,) <1 N éﬁ(‘ BO)n)n:m (1 + Bo/v, )1 —Bo/B,)( —By/B.,)

(23)
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Ut = [exp (— (B, * Bo)a an):l 2 (1 + Bo/B )1+ Bo/B,)
g ™ (8, + B)L—B,/B0) (—1/8,)(1 —8,/8,)

o
(1+ Bo/B,)(1 + Bo/B.,) (1 rur "ﬁ°>

(1=, /v, )1+ Bo/B, )1+ 8y/B_,)

M
x 1L (IpD

n=1 (1 —Bp/Bn)(l - Bp/ﬁ_n) <1 + i%lF;(— Bo)n> n=M+1 (1 + Bo/’yn)(l —Bp/Bn)(l - ﬁp/ﬁ—n)

for p=+1,+2,..., |pl <M.

The notation [1¢/#) indicates that the pth term is deleted.
The reflection coefficients {A D} and transmission coeffi~
cients {Dp} are related to {U;} by (10). This completes
the analytical solution to the problem.

IV. NUMERICAL RESULTS AND DISCUSSION

Machine computations for the coefficients of the propa-
gating modes are carried out for parameters a and 2
with ranges 0 < g <X and 0 < 2 = A, For these ranges
there can exist, at most, two reflected and two trans-
mitted beams exterior of the array. For computation,
the infinite product terms were truncated at 200, which
was found to be more than adequate. The question of how
many zeros to shift was answered using two criteria.
The first was convergence of the coefficients A, and D,
as the number of zeros shifted was increased. Second
was that of power check; namely,

(25)

Calculating the values of p® and p ), and normalizing to
p () gives (25) to be

B |>]
— A 124+ |D.|2) (22
' ZP>|:(| pl | pl ) <H30| ’

where the index p is for the propagating modes only.

Table I shows convergence of the coefficients A_; and

D_; for 6, = 75 degrees. The coefficients Ay and D
were found to converge slightly faster in most cases, so
that Table I represents a worse case. Generally speak-
ing, a shift of eight or nine zeros is sufficient. Power
checks were consistently good for six or more zeros
shifted. The nine zeros shifted case in Table I represents
a power check of better than 0. 19%.

Figure 2 presents the dominant beam coefficient for a
closely spaced array with ¢ = 0.25x,and & = 1. It is of

PO = p(n) + plB),

(26)

M=3.14159
2.0
w
2 a
> 10 2
5 a2
3 o=
< 0 5 2
w o
<E( -1.0 &z
g z
sl s
-2.0 *
-
o] 10 20 30 40 50 60 70 8O0 90
8, ANGLE OF INCIDENCE IN DEGREES
FIG.2. Beam amplitude and phase vs incident angle for # = 1A and
a = 0,252 (—— — — PHASE MAGNITUDE).
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(24)

TABLE I. Convergence of the coefficients A_; and D_,.2

Number of Zeros Shifted M A D4
1 0. 0691 0.1989
2 0. 0867 0.2121
3 0. 0983 0. 2162
4 0.1039 0.2185
5 0.1071 0.2198
6 0.1097 0.2208
7 0.1101 0.2211
8 0.1103 0.2213
9 0.1103 0.2214

a The parameters used for this computation are a = 0, 751,
h =1, and g, = 75°.

interest to note that in the limiting case # — o, the mag-
nitude of the reflection coefficient is given by

[Agl = (1 — cosdy)/(1 + cosby) (27
provided a < 0.501, which is plotted in Fig. 2 by a dotted
line. The difference between the cases with finite % and
infinite / is very small when the incident angle 6, is
close to broadside. This is due to the fact that the junc-
tions at x = 0 and x = k in Fig. 1 are nearly transparent
for small |6,].

In Fig. 3, we use 2 = 0.5x and a = 0. 751, which allows
the (— 1) beam to propagate beginning at the angle

6o = 19.5°. Note that at the grazing angle of the (—1)
beam, the scattered modal coefficients exhibit discon-
tinuous derivatives, as expected. The transmitted power
in the main beam drops from 100% at 6, = 0° to 73% at
8, = 60°, while the transmitted power in the (— 1) beam
is roughly 10% for 30° < 6, < 60°.

To demonstrate the dependence of #, we keep a = 0. 75
and incerase k to 1x. The result, presented in Fig. 4, is
quite different from that in Fig.3. A particularly in-
teresting phenomenon occurs at 6, = 13.0°. At this inci-
dent angle, |A,| =1 and |Dy| = 0 with the phase of D,
undergoing a jump of , which implies a fotal reflection!
Thus, if the structure is used as a microwave lens with
a > 0.50, a “blind spot” for the transmission is ob-
served in the angular region where no propagating dif-
fracted beams exist.

The total reflection phenomenon discussed above sug-
gests the existence of a modal solution to the open struc-
ture formed by adding an identical set of strips at a dis-
tance x = — (h + [) in Fig.1. A direct computation of the
modal solution to this structure is very difficult. How-
ever, by making use of the solution in the present paper,
a simple and elegant solution can be described. Con-
sider a plane wave traveling in the direction ¢_ with
field given by

HV = explik(x cosd, + z sind ). (28)

The reflected field from the junction at x = 0 may be
represented by
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FIG. 3(a) Beam amplitude vs incident angle for 2 = .5x and @ = . 75); (b) Phase vs incident angle for » = 0.5x and a = 0. 75x.
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FIG. 4(a) Beam amplitude vs incident angle for # = 1x and @ = 0. 75x; (b) Phase vs incident angle for 2 = 1x and a = 0.75x

H® = A, exp[ik(— x cosf, + z sin6 )]
+ (higher-order space harmonics). (29)

Since we are interested in the interaction between the
junctions at x = 0 and x = — [, the attenuating (assuming
6. is less than the grazing angle of next space harmonic)
higher-order space harmonics may be neglected provi-
ded that %7 is large. The reflected field in (29) is scat-
tered again at x = — [ and yields a scattered field

H® = AZ exp(i2kl cosd,) exp[ik(x cosd, + z sinf, ). (30)

Now, let us assume that 8, is the critical angle for the
occurrence of total reflection. Thus [A,| = 1, or

AO = eig, (31)
where £ is the phase angle of A, and may be computed
from the solution presented in this paper.

The condition for a self-consistent modal solution is
that H(D = H® or by making use of (31) in (30) and
(29):

exp[i(2¢ + 2kl cosd )] = exp(xi2n), n=0,1,2--"
Solving for kI gives
kl= (+ 2nm — £)/cos6,, n=20,1,2---. (32)

Thus, for a given kk and ka, there may exist a total re-
flection angle 6,. In such a case, one may use (32) to
determine kI for the existence of a modal solution of the
type described above. The modal field variation can be
obtained by combining (28) and (29) and the result is

ikz sinQC

H, ~ coskx cosf, — zte , for —1<x<0,

(33)
If sing, < 1 (or ¢, real), the modal field is a fast wave
propagating along the z direction. H sing, > 1 (or 6,
imaginary), the modal field is a slow wave, and its trans-
verse variation is no longer oscillatory. The modal
field outside the two sets of parallel strips,i.e.,
x < —(h+ I) or x > h,is of evanescent nature since the
only propagating beam has an amplitude Dy = 0. Thus,
the energy carried in this mode is entirely confined be-
tween the two sets of parallel strips. This suggests the
possibility of using this structure as a resonator. To
form a resonator, we may close the gap between two
sets of plates at z = 0, and z = d such that?

kd sind, =nm, n=12,3, - "-. (34)

For a ray impinging on the sidesat x = 0and x = — |
with an angle very close to 6, it is nearly totally reflec-
ted with very small diffraction loss. Suppose a source
or an active medium is placed in the resonator; a steady
oscillation will result when the diffraction loss is
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balanced by the gain from the source or medium. The
apparent advantage of such a resonator over a conven-
tional open resonator10.11 formed by two plates (at

z = 0 and z = d), lies in the fact that the two sets of
strips at x = 0 and x = — [ perform a further “filtering”

function for the field in the resonator, and, consequently,
the resonance frequencies should be even more sparse.
However, we emphasize that this resonator is only a
preliminary idea, and its merit can be ascertained only
after more quantitative analysis and experimental work.

'J.F. Carlson and A. E. Heins, Q. Appl. Math. 4, 313 (1947).
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The problem of finding central and L?-dependent potentials, acting among spinless particles, from the knowledge of the
S matrix as a function of angular momentum at a fixed energy is studied. The Newton method for central potentials is
generalized to this case, and it is shown that phase shift information at fixed energy is not enough to give us both the central

and the L*-dependent potential,

1. INTRODUCTION

A systematic method for the construction of the scatter-
ing potential from the knowledge of the S matrix at one
energy as a function of the angular momentum (inverse
scattering problem at fixed energy) has not only direct
physical significance; but it also gives us a better under-
standing of what kind of information on the potential we
can obtain from scattering experiments. The first re-
sults for the inverse scattering problem at fixed energy
for central potentials were reported by Newton,! and
this work was then extended by Sabatier.2 The inverse
scattering problem for L*S potentials has been consi-
dered by Sabatier3 and for the tensor force by Hoosh-
yar,4 but some work still remains for completely solv-
ing these two inverse problems. On observing the simi-
larities between the methods used for attacking the men-
tioned inverse scattering problems, one may wonder if a
similar method can be used for solving the inverse scat-
tering problem at fixed energy for L2-dependent poten-
tials. To make the problem simple, in this work we only
consider the inverse problem for LZ-dependent poten-
tials for spinless particles. In other words, the radial
Schrédinger equation which we would like to consider
should have the following form:

dz2
¥2 <;_2 + B2 =V (r)— I+ 1)V2(7’)) @,(7)

y
=1+ Ne,(r) (1.1)
where V (7) is the central potential, V%(r) is associated
with the radial-dependent part of the L“-dependent poten-
tial, and &, is the regular solution to Eq. (1. 1). The pro-
blem which we are interested in solving is to see what
can be said about V, and V, if the asymptotic behavior
of ¢, is given for all values of the angular momentum at
a fixed energy. We would like to point out that we are
not interested in this problem only because of our mathe-
matical curiosity, but also because the Schrédinger equa-
tion for tensor force can be put into a matrix form re-
lated to the above equation, and one needs to know how to
solve the above inverse scattering problem if one wishes
to consider the inverse scattering problem at fixed
energy for Nilsson potentials.5

Section 2 is devoted to the problem of connecting the
phase shifts to the potentials V, and V, through an auxi-
liary function which is the solution to the analog of the
Regge—Newton equation.1.6 For finding this analog of
the Regge—Newton equation, we found it to be more con-
venient to rewrite Eq. (1. 1) in the following form:

d? 1
2f = 2 —52 =
¥ <drz + & Vi(r) —2 V2(7)> ¥, (v) = (Az — Z>‘I/)‘(T)
(1.2)
where x =1+ 3, V, =V, —4{Vyand ¥, = &,. Also we
noticed that the analog of the Regge~Newton equation

that one may obtained for Eq. (1. 2), is such that it can be
used most conveniently if we assume that V, is an arbi-
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trary but known potential. In this work we have not con-
sidered what one can find from our analog of the Regge-
Newton equation if the above assumption is not made.

In Sec. 3 we give an example to demonstrate the method
for the construction of V, in terms of V, and the phase
shifts at a fixed energy.

2. THE PROCEDURE

In this section we shall develop the analog of Newton's
method?! for the Schriodinger equation where an I(I + 1)-
dependent potential is also present, that is, Eq. (1. 1).

As it was stated in Sec. 1, the potential V,(7) is the po-
tential which we are to find from the information on the
phase shifts, and potential V4(7) is assumed to be arbi-
trary but given. In order that our procedure work, we
also need the following condition to be satisfied:

1+ #2Vy(#)=0, forw =0,
1+ 72vy(r)/2 —1
[ 4 [0

y
and 22V,(z) should be an entire function of z.

(2.1)

< o

)

With above conditions satisfied the following functions
can be defined7:

” 2 172
) f ds [1+ s2V,(s)] L

s
F(y) = [5(7)]‘1/2 and

b(7) =7 expla(r)],

¢ = lim b(¥) /7. (2.2)

r—>00

Following the method developed in Ref. 1, we consider
the spherical Riccatti-Bessel functions U (k%) = u,(7),
which are solution of the following differential equation:

a2 k
72(57—2 N k%) u\(7) = (02 = Duy(r),  with by = —.

c
(2.3)
Next we define the input function f(7»,7’) as

flr,v) = 27 u,(v)du,(r),

AES

(2.4)

where the constants d, are arbitrary for now and are to
be found later from information on phase shifts, and for
our purpose, the set S is assumed to contain only the
half-integers.

g‘he analog of the Regge—Newton equation is then defined
y
K(r,7) = F)f (00r),7) = [27 ds s2K(r, $)f (s,7").
(2.5)
Using the standard arguments? concerning the Fredholm
determinants of Eq. (2. 5), A(z), we notice that A(z) is
analytic in the domain of analyticity of b(z) and the
zeros of A(z) are poles of K(z, z’). It then follows that in
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the domain of analyticity of K(z, z’), A(z) =0, (2.5) has a
unique solution and the homogeneous version of Eq. (2. 5)
has only the trivial solution. This fact, together with the
performance of some tedious differentiation and integra-
tion by parts, enables one to come to the conclusion that

42
72 (;—2 + B2 =V (r) — 3 Vz('r)> K(r,»")
42
=1+ 72V, (#)r'2(— + kZ)K(r,r) (2.6)
2 1
< d,,,./Z
i
Vl("') = k2 _‘bk% —% V2

+ p1 <F — L (52K (r, b (r))] ~ bo2-LK(r, b(r))) (2.7)

Choosing Eq. (2. 7) as the definition of V,(#) in Eq. (1. 2),
using Eq. (2. 6) and performing some differentiation and

integration by parts, we can show that the regular solu-

tion ¥, (#) of Eq. (1. 2) can be written as

b(r)

0 (2. 8)

¥, (7) = F(nu,[b(r)] — [ ds s 2K(7, s)u,(s).
Since we have assumed that the asymptotic behavior of
¥, is known (that is, the phase shifts), then it follows
that K(v, s) in Eq. (2. 8) should have been so chosen so
that it can give us the correct behavior for ¥,. In other
words, Eq. (2. 8) should be used in such a way that it
gives us the set d, which corresponds to the desired
asymptotic behavior of ¥ . In order to achieve this, let
us substitute (2.4) in Eq. (2. 5) and make use of (2. 8) in

order to get

K(r,r") :g}g ¥, (r)d,u (7). (2.9)

Substituting Eq. (2. 9) in Eq. (2. 8) gives us the desired
relation

¥,(r) = F(r)u,[b(7)] —g}s ¥ (r)d, L, ,(7)
with
L)\’y(?) = fob(r) ds s‘zu)\(s)uy(s).

(2.10)

We are interested in the asymptotic form of Eq. (2. 10),
and because of uniform bounds of %, and ¥,, which are
shown by Sabatier® to be of order of A1/3, we see that we
can take the limit as » —» ® inside the summation in Eq.
(2.10) if |d, | < CA/3-¢, where C is some constant. With
this assumption realized we let » tend to infinity in
(2.10). Using the following asymptotic forms

lim ¥,(») = A, sin[kr —$7(x — 2 +6,],

Yoo

lim u () = sin[kyr — 370 — 3)], (2.11)
r—*00

lim b(») = lim c7,lim F(r) = ¢1/2,

>0 r—> 0 y=> 00O

writing the sine function in terms of exponentials, sepa-
rating the coefficients of e and e-#7, and equating the
coefficients separately, we find that

Al =1-3 L\ (0)d,aee’ VPO, (2. 12)
YES
where
d, = kyd,, A)=cl24,
and

Ly, (@) = sinfly —N)(@/2))/(r? —22).
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Equation (2.12) is identical with Eq. (17) of Ref. 1 and
the question of finding the d, from the phase shifts, via
Eq. (2. 12), becomes identical with the similar problem
which arises when one tries to do the inverse problem
for only the central potentials, with no (I + 1)-depen-
dent potentials. This problem has been considered in de-
tail by Newton! and Sabatier,? and they have shown that,
in general, one can find sets of d, corresponding to a set
of phase shifts, if the phase shifts tend to zero suffi-
ciently rapidly with increasing value of the angular mo-
mentum,

Having found a set of d, corresponding to a given set of
phase shifts, we can define the input function for (2. 5)
from Eq.(2.4). From Eq. (2, 5) we can then find K(»,7’),
from which, using Eq. (2. 7), we can find the potential
V1(7). Clearly the construction of V() then assures us
that this potential, V,(#), together with V,(7), is such
that the wavefunction ¥,(#) will have the desired asymp-
totic behavior.

3. EXAMPLE

For the purpose of illustrating the method let us assume
we are given a set of phase shifts such that the corres-
ponding d, are found to be
d,=0
d7 = 0,

forall X =y,

3.1

Since V, is arbitrary in this case, let us choose it to be

Volr) = V3(7) + 2V(7)/r, (3.2)
where
V(r) = we"

and w is some constant. Clearly V, will satisfy condi-
tions of Eq. (2. 1), and the defined functions a,b, c and F
are then given as

aP)y=w —V(¥), b(r)=cre?", c¢=ex (3.3)
and F(7) = b-1/2[V(r) + 1/r}V/2, ’
From Eq. (2. 10) it follows that
@, () = F(ru,[b(r)/[1 + d, L, (7). (3.4)
It then follows that
b d L
4,r) = K)o ) - Tl cLes S IR
1+ dyL%y(r)
Substitution of Eq. (3.4) in Eq. (2. 9) implies that
K(r,7") = F()u, (r)dyu, (r)/[1 +d L, (r]. (3.6

Knowing K(,r’), one can find potential V;(») from Eq.

(2.7):

Vilr) =[1 —e 2V + 7rV)2|k2 — 3V, + 5[r2VE — 72V,
+2V2(72 — 1) + 6V]/(1 + 72Vy)
—2e¥(1 + rV)[ — G(7)
+(V + 1/7)G(»))/cv2, (3.7

where
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6(r) = u2lp(»)d,/[1 + d, L, (7).

From our construction procedure it follows that ¥,,
given by Eq. (3. 5), is the regular solution to Eq. (1. 2) if
the potential V; and V, in that equation are given by
Egs (3.7) and (3. 2). If we let » tend to infinity in Eq.
(3.5), we find that the phase shifts associated with the
potentials V; and V, have the following form:

tan(6,) = 0 if [x —y| is even,

kyd
tan(s,) = rL
(1 + 1hyd /2y)(y? —~ 22)

(3.8)
if |[x —v| is odd.

One should notice that when V, = 0, k2 = &, and, if we
choose units such that 2 = 1, then the example which we
have considered is the same as the one in Ref. 1. As ex-
pected, the results become the same.

From the construction procedure and the results of our
example, we observe that in a scattering experiment in
which Egq. (1. 1) is the governing equation, we cannot de-
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duce both the central potential V; and the L2-dependent
potential V, from the information on phase shifts of all
angular momenta. In other words, the information on the
phase shifts gives us only a relation between the central
and L2-dependent potentials. In this work we have been
able to give a method for finding the central potential

V, if the L2-dependent potential V, and the phase shifts
at a fixed energy are given.

We also find it interesting to point out that for the L2-
dependent potential in our example, Eq. (3. 2), the phase
shifts associated with this potential and V, tend to zero
for large values of the angular momentum. This obser-
vation is not a priori obvious and suggests that the
method could also be used to study the asymptotic beha-
vior of phase shifts associated with L2-dependent poten-
tials.
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A theory of elastic deformations of general relativistic systems is presented. The theory is derived from a generalized
Hooke’s law. An important feature of this theory is that its classical limit corresponds to the classical elasticity theory
of prestressed materials. A perturbation description of small deformations is developed and applied to the test body
case. For the first time, the strain-curvature equation for an elastic test body interacting with a gravitational wave has
been derived from a complete theory. The semi-classical work of Dyson, showing the interaction of a gravitational wave
with the inhomogeneities of the shear modulus, is rederived and placed within the framework of general relativity. The
theory presented is quite comprehensive in scope and applicable to fully relativistic situations such as the elastic

behavior of neutron stars.

1. INTRODUCTION

Elastic phenomena in the relativistic domain of influence
have recently come into prominence. The most notable
of these is Weber's observation®.2 of the elastic re-
sponse of an aluminum cylinder to gravitational radia-
tion, Along the same lines are investigations3.4 of the
excitation of the earth's and moon's vibrational modes
by gravitational waves. These gravitational radiation
experiments do not directly involve the relativistic pro-
perties of elastic bodies, but rather their interactions
with relativistic fields. However, it has been argued5
that the crusts of neutron stars are in elastic states. If
so, they would manifest full relativistic elasticity in
which the velocity of sound waves is comparable to the
velocity of light.

Relativistic theories of elasticity split into two cate-
gories characterized by their formulation of Hooke's
law:

(i) Rate of change of stress is proportional to rate of
change of strain.6.7

(ii) Stress is proportional to strain.8.9 In the first case,
the rate of strain is formulated in terms of the deriva-
tive of the space—time metric along the four-dimen-
sional hydrodynamical streamlines, but the concept of
strain itself is not introduced. Modern terminology
would classify such treatments as theories of hypoelas-
ticity. In the second category, an auxiliary spatial metric
is introduced. This metric describes the equilibrium
separation of the streamlines. The concept of strain is
formulated in terms of the difference between the equili-
brium separation and the actual separation determined
by the space—time metric. This description corresponds
to classical elasticity theory.

We adopt formulation (ii) of Hooke's law as the basis of
our approach. In particular, we base our treatment very
closely upon the work of Rayner,8 in which the auxiliary
metric describes a state of rigid motion of the elastic
body. The auxiliary metric is to be regarded as part of
the thermodynamic specification of the equilibrium state
of the body. An alternative approach® which has been
taken introduces the auxiliary metric by imagining small
portions of the body removed to a distant stress-free
region where their natural state can be examined. The
auxiliary metric is then defined in terms of the equili-
brium separations in the natural state. The conceptual
awkwardness of this approach is that the natural state
may not be in the solid phase, but instead a liquid or
even an expanding gas with no finite equilibrium config-
uration. Such is likely to be the case with the elastic
material in a neutron star,
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Rayner's statement of Hooke's law does not include the
possibility of initial stresses in the equilibrium state of
the body. Such stresses are likely to be important to
the elastic properties of bodies of astronomical size. In
Sec. 2, we extend Rayner's theory to conform with a gen-
eralized Hooke's law of the form:

(iii) Stress minus equilibrium stress is proportional to
strain.

Our formulation of a general theory of elasticity is pri-
marily for the purpose of a starting point to describe
small elastic deformations. It is in this case that rela-
tivistic elasticity theory can be expected to be most
meaningful and applicable., We develop a general pertur-
bation theory in Sec. 3 based upon a rigid equilibrium
space—time and an associated one-parameter family of
space-times representing elastic motion, We will not
apply the results of Sec. 3 to fully relativistic systems,
such as neutron stars, here. Instead, as a check on these
results, we proceed in Sec. 4 to derive the test body limit
for elastic perturbations. In this limit, our results are
in essential agreement with other works describing the
interaction of elastic test bodies with gravitational
waves. Furthermore, in the nonrelativistic limit we find
agreement with the classical theory of elasticity of pre-
stressed materials.10~-12 To simplify the discussion we
will treat adiabatic motion only, Effects of damping may
be included using the techniques of relativistic viscosity
theory.

2. GENERAL THEORY

In order to formulate an energy—-momentum tensor Taﬁ
appropriate to the description of an elastic body, we
begin with the standard hydrodynamical description. (In
this section, we use a “bar” over symbols representing
physical quantities to facilitate later notation). The tra-
jectories of the material particles trace out world lines
with unit 4-velocity #2

Aoy, =1, (2.1)
so that the metric has the natural decomposition!3

8ap = Tally + Yap) (2.2)
where the spatial part y, ; satisfies

%Bﬁﬁ: 0. (2.3)

The tensor y, %8,

;’ocﬁ = grﬁo;oto = aocB - uauﬁ’
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satisfies the idempotent relation
Yo "P6° = Yu°

and acts as a spatial projection operator on tensor
fields. The energy-momentum tensor takes the usual
form

Tocﬁ Zpﬁaﬁs“-ﬁas, (2-4)
where the energy density p and the stress tensor __aB are
measured in the local rest frames,

?aﬁiiﬁz 0. (2.9)

Following Rayner,8 we now introduce an auxiliary
spatial metric 3, ; which imposes a rigid structure on
0

the three-dimensional manifold of trajectories. It satis-
fies the orthogonality condition

7,48 =0 (2.6)
0

and has vanishing Lie derivative along the trajectories

L Za 5= 0. (2.7)
This auxiliary metric describes the equilibrium dis-
tances between neighboring streamlines. For physical
purposes, we may adopt the point of view that in the in-
finite past the body was in an equilibrium state satisfy-
ing the conditions of Born rigidity with initial conditions

Fos ™ Jas* (2.8)
Note that the nondegenerate metric
Bap = ally T Yo (2.9)

satisfies the conditions of rigid motion for all times.
However, this latter metric, while of mathematical
interest, cannot be interpreted as an equilibrium space-
time metric (see Sec. 3).

The strain tensor S, ; is defined by

Sap: = 3(Fas ~ Fas)- (2.10)
As a generalized statement of Hooke's law, we now
postulate that the stress tensor is given by14

Potﬁ = OP_aB + 43‘0(01(‘)PB)0 + Kaﬁpys

s (2.11)

where gjaﬁ are the stresses present in the unstrained

equilibrium state and the second-order adiabatic elastic
coefficients A # have the Voigt symmetry

AoBpy — Aprad — ApvBa (2.12)
These quantities refer to the local rest frame,i.e.,
(2.13)
(2.14)
In this formulation of Hooke's law, both the background
stress and the elastic tensor give rise to stresses which
are linear in the strains. The justification for this is

given by the correspondence with the classical theory
(see Sec. 3). Note that the effective elastic tensor
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4gvlaPBy + pobpy
0

does not possess the Voigt symmetry.

The complete thermodynamic description of an elastic
body would include an equation of state for the equili-
brium energy density and stress, the details of which
vary from system to system. Here we implicitly regard
the equilibrium properties as included in the specifica-
tion of the system. Equation (2, 11) then gives the addi-
tional stresses in nonequilibrium configurations. The
change in energy density due to elastic deformations
follows in the usual way from the conservation equation

ﬁﬁﬂfaﬁ =0

(where Vﬁ denotes covariant differentiation with respect
to g,,). The full set of equations of motion is given by

§BT°‘B= 0. (2.15)
The Einstein equations are necessary to complete the
description. Qutside the body, the Einstein tensor
vanishes, and inside we have

Gyp=— (871G T, (2. 16)
On the surface, we have the boundary condition that the
normal component of stress vanishes:

17“,, n' =0, (2.17)
Equation (2. 11) is a realistic description of the elastic
stresses only when the higher-order elastic coefficients
are not important as in the case of small strains. This
is the situation for which relativistic elasticity theory

is most relevant and which we now treat by perturbation
methods.

3. ELASTIC PERTURBATIONS

Elastic motion will now be developed as a perturbation
of an equilibrium system undergoing Born rigid
motion.15.16 In practice, static or stationary equilibrium
states are more often of interest; but we will defer such
specialization until Sec.4. Born rigidity is the neces-
sary and sufficient condition for strain-free elastic
motion and is, therefore, the most natural choice for an
elastic equilibrium state. In general relativity, Born
rigidity imposes much weaker restrictions on the motion
of a body than in special relativity, so the equilibrium
system has considerable dynamical freedom.

The hydrodynamical description of the equilibrium state
follows from specializing the conditions of Sec. 2 to the
strain-free case. We use the same symbols for physical
properties of the equilibrium state as in Sec. 2, but with-
out a “bar”. Thus,

uu, =1, (38.1)
Sap= Uty F Vog, (3.2)
Yap® =0, (3.9)
Typ= Puguyg— Ep, (3.4)
P, ,ub=0, (3. 5)
Gop=— (8TGC Y T,,, (3.6)
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and

P nv=0.

s (3.7

The necessary and sufficient condition for rigid motion

18

f’)’aﬂ = 0. {(3.8)

The kinematic properties of the rigid body are deter-
mined by the acceleration vector!?

Gy = Uy qub (3.9)
and the rotation tensor

Wop i= U(a;p) ~ Blalp] (3.10)
with

Ug,p=Qulg+ Wyg. (3.11)

In addition, the various dynamical corollaries of rigid
motion apply, for instance
i} p=0. (3.12)
Now consider a one-parameter family of elastic sys-
tems S(e). For each value of €, the system consists of a
four-dimensional manifold M(¢) with space-time metric
g (€) and physical properties as described in Sec. 2.
We denote the relevant tensor fields on M(¢) by u%(e),

T, 4l€), ete. For € = 0, we choose a rigid system as des- '

cribed above. In that case, we simply write 5(0) = S,
7(0) = u% 2,(0) = g,,, etc.

In order to compare the systems S(e) with § we must
map them all onto a common manifold, which we choose
to be M = M(0). There are as many ways to do this as
there are one-parameter families of diffeomorphisms
of M. This is the gauge freedom of general relativistic
perturbation theory. However, there is one natural class
of gauges for this problem, namely the comoving gauge
in which corresponding streamlines are mapped into
each other. We can picture this in the following way.
Asymptotically, in the infinite past, all systems S(¢) are
chosen to satisfy the same initial conditions as the rigid
system S. This induces a natural identification of
material points and, consequently, an identification of
streamlines in the manifolds M(¢). The remaining gauge
freedom corresponds to the ways in which identified
streamlines can be mapped into each other. We restrict
this by requiring that unit proper time intervals along
the streamlines in i7(¢) be mapped into unit intervals
along the streamlines of M. The resulting gauge trans-
formation group has infinitesimal descriptors

%= fu )
where f is constant along each streamline,
f;au“ = 0.

The following conditions are immediate consequences of
the comoving gauge:

Zoca(e) = Yops (3.13)

7€) = ue, (3.14)
and

7o(e) = ne. (3.15)

In addition, because we are considering purely elastic
perturbations, we take
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g)cxﬂ(e): P4 (3.16)
Since the parameter € can be arbitrarily rescaled, with-
out loss of generality, we choose ¢ = 1 for the perturbed
system S we wish to treat, so that S = $(1). Then, to
lowest order in the perturbation, quantities in § are re-
lated to their counterparts in S by the rule

ad = YA
de =0

=A — A + higher-order terms,

(3.17)
where A symbolizes a generic tensor field. The kine-
matic properties of the perturbation are given by the
velocity

vy = Au, (3.18)

and the strain

Sus = %A'}’ae' (3.19)
They satisfy

vy=1luo, (3.20)
and

Sap="1Sup, (3.21)

where the projection operator L projects every free
index with

YoP=06,8—u ub, (3.22)
The perturbation of the metric is given by
hopi=A8qs=2u( U5+ 2S,,. (3.23)

In the comoving gauge, the streamlines of an oscillating
elastic system coincide with the streamlines of the un-
perturbed rigid system. As a result, there is no kine-
matic concept of displacement from equilibrium as in
classical elasticity theory. The acceleration due to the
perturbation satisfies

bag=Lv,. (3.24)
Consequently, for cases of practical interest Au, will
normally be nonzero, even though Au® vanishes because
of the gauge conditions. This is why the rigid metric
&5, introduced in Eq.(2.9) of Sec. 2, is not suitable for
describing the unperturbed system.

Hooke's law for small perturbations takes the form

APDCB = 4SU(0LPB)M + AOCB“‘IS;_LD’ (3-25)
where
Aaﬁ‘w = P»H(l) Xaﬁuv(e), (3.26)

The complete set of dynamical equations governing the
perturbation are obtained by applying the A operator to
Eqgs.(2.15)~(2.17). A collection of useful formulas and
results are presented in Appendix A.

The perturbation theory developed above is applicable
to fully relativistic systems for which the equilibrium
space—time is curved. We do not treat such applications
here, but proceed to compare the test body limit of the
theory with other descriptions of elastic test bodies
interacting with gravitational waves.
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4. TEST BODY LIMIT

We now restrict our considerations to the test body
limitl®8 in which the elastic system does not give rise to
space—time curvature. In addition, we restrict the
streamlines of the material points in the body to be non-
rotating geodesics.19 Thus we have

Euw 7 My s (4.1)
with n w the Minkowski metric, and the trajectories
satisfy

uy,, =w,=a,=0. (4.2)
The test body equation of motion (A14) becomes
p(D4 + Sub) + (Apuk + Prey Y — (AroaBS )

— PB(28k .5~ Sup + 8,,00,)=0. (4.3)

The dynamical equations of the perturbation theory
developed in Sec. 3 now allow us to relate the physical
observables: the strain of the elastic test body and the
curvature of the gravitational wave. However, the tradi-
tional elastic equation, the equation of motion of the de-
formation itself, requires the introduction of the concept
of displacement from equilibrium. This must be done in
a gauge different than the comoving one.

A. The comoving gauge

Proceeding in the comoving gauge of Sec. 3, the ## com-
ponent of Eq.(4.3) is

(ap)" = — p§ — Pe8S, ,, (4.4)
which gives the rate of change of density, where the first
term on the right is due to the expansion of the material

and the second term is due to the work done by the
stresses.

In order to relate the change in strain of the test body
with the curvature of the gravitational wave, we use the
spatial projection of the equation of motion (4.3) and the
kinematical relation given by the perturbed Ricci
identity (A10). Restricted to the test body, Eq.(A10) re-
duces to

LASw — pWwin) + ARH ¥ uoud} = 0, (4.5)
where we have contracted the equation with «9 and pro-
jected the free indices. Restricting the test body equa-
tion of motion (4. 3) to the case of negligible initial
stress, we find by projection

Lyk = p l(AweaBS J).. (4.6)
In the comoving gauge v* has no direct physical inter-
pretation. Geometrically, it represents the difference
between rest frames of a material point in the equili-
brium system and its vibrating counterpart, both having
the same streamline. In order to obtain a relationship
between physical observables, v* is eliminated by dif-
ferentiating Eq. (4. 6) and substituting it into Eq. (4. 5).

We find

N {S“" _ p—lv(pvo [Av)oaﬂsaﬁ]

+ p2piy, [AVoasS ] + ARH Y ucuc}t = 0. (4.7)
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This describes the response of an elastic test body, such
as Weber's aluminum bar, to incoming gravitational
waves. The second term of (4. 7) arises from the usual
elastic restoring force and the third term from inhomo-
geneities in the density of the body. The last term re-
presents the gravitational tidal force.

B. The displacement gauge

We now explicitly introduce the deformation in order to
obtain its equation of motion. Once again we compare
the systems S(e) with S, where S is now the flat equili-
brium system of the test body. However, we no longer
choose the comoving gauge in mapping S(e) and S onto
the common manifold M = M(0). Instead, we introduce a
vector field £+ in M to represent the elastic displace-
ment and map the streamlines of S onto the displaced
streamlines of S. This gives
u'h = uk + efh, (4. 8)
where a prime denotes quantities in the displacement
gauge. As in Sec. 3, we choose ¢ = 1 for the perturbed
system. In this gauge the first order perturbation
quantities in S are related to their counterparts in S by

dAa’(€)

de e=0

A'A: =

= A’ — A + higher-order terms,
(4.9

for a generic tensor field A. Quantities in the displace-
ment gauge are related to quantities in the comoving
gauge by

A’ =K—ECA, (4.10)
as exemplified by the gauge transformation of the metric
tensor. For further discussion of this point see Ref, 20.
Equation (4. 10) then relates the operators A’ and A by

AA=AA — ogﬁA (4.11)
For the perturbed metric

bt = 88y, = A8y, — Lny,,
we use Eq. (3. 23) to obtain

h;“, = ZSW + Zu(uvy) — 2’;’(“;,,). (4.12)

From the u¥ component and from the projection of (4. 12)
we find, respectively,

?

vy =h' U+ 2%, yub (4.13)

n
and

Sy = L[%h’w + §(u;y)]. (4.14)
It is evident at this stage that the quantities v pandS,
which describe the kinematic properties of the perturba-
tion in the comoving gauge, can be replaced by combina-
tions of {, and k', in the displacement gauge. Rather
than maintain complete generality in the equations of
motion, we now restrict the gauge freedom in order to
obtain a clear interpretation of £,

We demand the radiation gauge condition
B u? =0, (4. 15)

Contraction of Eq. (4. 12) with ¥ results in
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B utur + 2(£“u")‘ = 0. (4.16)

In the radiation gauge, £ u* is constant, according to
Eqg. (4. 16), so that without loss of generality we choose

gur = 0. (4.17)
Equations (4. 13) and (4. 14) become

v, = ép (4. 18)
and

SUV = %h,py + g(p,'l/) “},:(“MD). (4. 19)

Here v, can be interpreted as the velocity of the dis-
placement £, orthogonal to the streamlines. We use
Eqgs. (4. 18) and (4. 19) to rewrite the equation of motion
(4. 3) of the displacement. The u* component gives

(8p) = —p ., + 30"h' ) — PoB(E .4 + 31’ ). (4.20)

for the rate of change of density, and the spatial projec-
tion gives
(pEr + Prok ) + L(3 PSR’ 4i0)
— [Aﬂoaﬁ(ga;ﬁ + %h,aa) + Paoh/pa_{. %P}Jonaﬁh’aﬂ
— &pHo]. =0, (4. 21)
3 ;

where we have used the equilibrium condition Pe?., = 0.

Let us now consider the case treated by Dyson of an iso-
tropic body with no initial stresses which interacts with
a p-p wave. There are only two independent elastic
moduli, the LLamé parameters,
AHooB = Aryuo 7,0(3 -+ 2#7/}1(0(7/5)0’ (4. 22)
with y#¥ now the negative Euclidean metric of the spatial
hypersurfaces. The details of the p—p wave are given in
Appendix B. Equation (4. 21) now reduces to
pEb — (AroeBE, ). —p, gh'¥ = 0. (4. 23)
This shows that the gravitational interaction is between
the wave and the inhomogeneity of the shear modulus, in
agreement with the result obtained previously by Dyson.?
In order to recover the equation of motion for the strain
tensor, we rewrite Eq. (4. 23) as
Eh —p1(AroasS o). =0. (4. 24)
With the help of Egs. (4. 19) and (B9), differentiation and
projection leads to Eq. (4. 7) for this special case.

C. The classical limit

In the displacement gauge, Hooke's law, Eq. (3. 25), for
small perturbations takes the form

A'P g =45 Py, + A S, — ‘f‘Pas- (4. 25)
For the contravariant version, this gives
P ag = pas — LPad + AaBUYS (4. 26)

£

in agreement with Hooke's law for prestressed mater-
ials in classical elasticity theory.10-12

The special relativistic limit of Eq. (4. 21) is
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(pEr + Prag )* = (Avoebt, ; — LPko), . (4.27)
The term Puaé o 1s a relativistic correction to the ener-
gy density due to initial stresses. In the nonrelativistic
limit, we obtain the classical equations of motion for
elastic deformations of prestressed materials.

5. SUMMARY

We have presented a general relativistic description of
elastic deformations which extends the initial work of
Rayner. This is based upon a generalized Hooke's law
for prestressed materials.

We have treated in detail the perturbations of an equili-
brium system undergoing Born rigid motion. A most
important feature of this perturbation treatment is its
classical correspondence with the elasticity theory of
prestressed materials.

For the first time, the strain-curvature equation for an
elastic test body interacting with a gravitational wave
has been derived from a complete theory. Previous
treatments have introduced assumptions concerning test
body motion in an ad koc manner. We have corroborated
the semiclassical work of Dyson showing the interaction
of a gravitational wave with the inhomogeneities of the
shear modulus. This places Dyson's results within the
framework of general relativity.

The theory developed here is quite comprehensive in
scope, although we have only applied it to the test body
case. The agreement of our test body results with other
physically reasonable descriptions leads us to believe
that our work can be properly applied to fully relativis-
tic systems.

APPENDIX A

Application of the A operator, defined in Eq. (3. 17), to the
indicated quantities leads to the following perturbation
equations:

Metric:
Aguv = hpy’ (Al)
AghV = — ¥, (A2)
Christoffel symbols:
A{gY} = é(hmB:y + hay;ﬁ —hey’.a), (A3)
= 250‘(6:7) _SBy;a
T UV gy T VMU gy T Vgl
+ u“;(evy) - [U(Buy)]?“. (A4)
Riemann tensor:
AdeuB =Vv,A {ﬁ‘ﬂ} - VBA{;%}, (As)
AR :gaUAR““DB-%- haoRapuﬂi (A6)
where we use the convention corresponding to
ZA#:[PO] = AaRa#Po ‘
Ricci tensor: With the definition R : = B¢, , we
have
AR, =v,a{z} —v,a{z}, (A7)
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and using (A3) and (A4) we find
AR, =S, — 8% 5% et S e
+ [u (uv v)]; aa - [1) oM (p ]; y)Oc
—lu v lin® (A8)
where S: = g=8§ .
Curvalure scalav:
AR =g'AR,, —h"R,,. (A9)

Ricci identity: For the identity 2u
we have

= o
=u R

vilpol vpoo

Vo(vv;p - uaA{%p}) - Vp(vv:o - uaA{l%})
+ g, + aauo)A{gp} —(w,, + aaup)A{go}
+ o R, % +tu AR, % = 0. (A10)
Einstein equations:
AG,, = — (87Gc4)AT,, , (A11)
where the Einstein tensor is defined as

G =R, — %gwR.

Maltter lensor:

ATuu = Apu“uu + 2pu(uvv) - APHU (A12)

with AP, given by Hooke's law Equation (3. 24).
Equations of motion:
A(Tw,,) =0 (A13)
which can be written in detail as
p(0F + v wok — 2SF_a%+ Sub + voa ub)
+ (Apub + Phay ) — (ArvebS ).,
— PoB(28H g — S i + S, 00 + whyv, — v agut)
=0, (A14)

where the dot is defined as the covariant derivative along
ua:

As: = uev A#,
Boundary condilions:

ne AP, = 0. (A15)

1939

APPENDIX B

We list the properties of #’ , for a linearized p—p wave:
Let the complex vector m * ilave the decomposition

mh: = pH + ig*
in terms of two real orthonormal spatial vectors P* and
q*,

p“pp = qu“ g 1
and

P4, =mtm, = 0.

We choose m# such that

wem, = km =0, (B1)

where k2 is a real null vector corresponding to the pro-
pagation direction of a p—p wave

kek = 0. (B2)
To specify the p—p wave, we take m* and k¥ to be co-
variant constant

Ry, =m,.,=0. (B3)
The wave is then given by

R, =f Re{m,m,}. (B4)

The derivative of the scalar f satisfies
Fio =T kpe

(The prime of f symbolizes a derivative and should not be
confused with the prime of #’ uv') 1t follows that

nR',, =k, =0, (B5)
and

Ry = (08 1) RoR (B6)
The Riemann tensor is given by

AR, o =2V, Gliar (B7)
It satisfies the equation

ARﬂquoko = 0. (BB)
The contraction with ueu° is useful:

AR, uoue = —%}z"w. (B9)
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On the possibility of observing first-order corrections to geometrical optics in a curved

space-time
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Gravity's effect on the polarization of test electromagnetic fields is presented. It is shown that under ordinary

circumstances the effect is not measurable.

INTRODUCTION

Almost all calculations which involve electromagnetic
waves moving in a curved space—time resort to the geo-
metrical optics (g.0.) approximation for test fields. g.o.
gives information about the intensity of point sources, the
bending of light rays, and the distortion of wavefronts as
the light moves through a curved space—time. However,
it neglects wavelength dependent properties such as
polarization, e.g., a plane or circularly polarized wave

at the source will be a plane or circularly polarized
wave at the observer. To estimate what effect the gravi-
tational field has on the polarization, one must go to the
first-order correction in wavelength for g.o. In the next
section the first-order correction is presented, and in
the following sections it is applied to a point source in a
Schwarzschild field.

FIRST-ORDER CORRECTIONS TO g.0.!

Following Ehlers the E & M field in vacuum can be
written as a self-dual bivector G¢* and the amplitude of
the wave expanded in a power series to first order in the
wavelength:

G (x¢ €) = Kﬁb(;‘(e, €)ez‘s(xd)s’e + Kﬁb(xf, E)e»is(xd)!e}

~ [K22(0) + K2b(1)eleiS/c + [K2b(0) + Kab(1)ele-iS/c, (1)
where the positive phase terms represent the right cir-
cularly polarized part of the wave and negative the left.

S = con. are the null surfaces of constant phase and ¢ is
related to the wavelength by

X = —27¢e/(S, u), (2

#“ being the observers 4-velocity (uwu, = —1).

There are only three independent self-dual bivectors, and
one is given by K, (0) and K_(0), i.e., by the g.o. limit,
€ - 0. These basis bivectors are constructed in terms
of a null tetrad (k, = S, ,,m ,,t,) which is parallely
transported along the characteristics of the null surfaces
S = con,?

kek, =mlm, = {% = tam, = {2k, = 0,

kem, =tof, =+ 1,

k,=m,=ia=0, where () = gav,, &)}

The basis bivectors are then simply written as

Vab = 2 plafhl, Uab = 2plagll,

M2 = 2klam?] + 2flage], )
The g.o.limit as given by Maxwell's equation is

G = A, (0)VabgiSle + A (0)yabg-is/e (5)
where
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A, (0) + 64, (0) = 0. (6)

6 in the above is the usual expansion parameter (9 =
tek, 0% = k2. ), and Eq. {6) says that the intensity of a
g.0. wave falls off as {area)!. The polarization is un-
affected because only V4 appears and it is parallely
transported.

To do the first-order corrections to g.0., K# and K2
are expanded in terms of V¢, U, M and Maxwell's
equations are imposed to first order in e:

Ktb=A,Veb+ B, U® + C M2, A, =A,(0 +A, (e,

M

B, =B,()¢, C, =C, (e

Maxwell's equations give

B, (1) = x¢{A, (Do,
C, 1) =1+« 14, (0),?~A1 (O)C: (8)
A, (1) = & iA, (O)fu

where , = 1%V,

f: {x¢) are functions satisfying

P At(o},t_,! __Ai(o),t‘_- -
*"( 4,(0) S 0")’

A, (0) '
and o, £, 0’ are scalars defined in terms of the tetrad by

9

o = fak, I,

C: tat—a;btb:

usual shear,

o =Tem,, 20, (10)

The procedure for doing first-order optics is to first
construct Sand its tetrad field; second, to evaluate the
scalars 6,0, {, and ¢’ and integrate Eq. (6) for the geo-
metrical optics terms A, (0); and finally, turn to Egs. (8)
and (9) to find the first-order correction. Equation (9) is
clearly the hardest to solve in most applications, how-
ever, in the next section it is shown that B, (1) are the
only terms needed to estimate polarization effects,

FIRST-ORDER EFFECT ON POLARIZATION

The electric and magnetic vectors seen by an observer
u? are given by

8“=E“-iB“=G“bub, (11)
and the maximum and minimum values of E2 are
E%ax,min =1{6-8+ 18§ &|}. (12)

Gravity's effect on polarization can be estimated by con-
sidering right circularly polarized light at the source. If
the light stays right circularly polarized, then '8 re-
mains zero as it does when K4 = 4, Ve, The following
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can be taken as alteration of the polarization,
P=6-8|/(6"8) = 2|A,B, —C2|/(68), (13)
where §'8 = E2__+ E2_ is proportional to the inten-
sity. P gives the fraction of the energy carried by the
linearly polarized part of the wave. Equation (13) shows

that the first-order term in P comes from B, (1) alone,
and when Eqgs. (5) and (8) are used it reduces to

P = |ole/(kau)?. (14)

If an effect on the polarization is going to be observed,
Eq. (14) says that the gravitational field must introduce
large amounts of shear into the light waves. Two ob-
vious applications are (1) at focal points in Schwarzschild
fields and (2) in high shearing cosmologies near the big
bang. In the next section the first case is considered.

OPTICS IN THE FIELD OF A DENSE STAR

A dense star is interesting because of its radius R is be~
tween 2m and 3m it can focus its own light (see Fig. 1)
and near focus ¢ — ®. When looking at a point Source on
the star the expansion and shear 6 and o can be defined
in terms of the two dimensions of the wavefronts

9=1\D,/D, +D_/D_|, (15)
o=4lD,/D, —D_/D_|. (16)

/

8¢

STAR
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D, and D_ are given by
D_ = b8y sing, (1

dr
= 1727 _
D, = obri{r}1/2[ eyt

where {r} = {1 —(2/?)[1 — @m/r]}.

In the above equations, » and ¢ are the usual Schwarzs-
child coordinates (¢ = 0,7 = R is the location of the
point source) and [ is the impact parameter at . 83 is
an isotropy parameter and is defined in Fig. 1. o (and
hence P) becomes large near focus (¢ — nw) and can be
approximated by

0 ~ Lcote(kl/r2) ~ kl/ 28072, (19)

where k is the affine parameter constant for a null geo-
desic in Schwarzschild space-time and A¢ is defined in
Fig.1. Near focus P becomes

[1—@m/)t/2 /1
P d7Adr <r> ’ (20)

According to Eq. (20) long wavelengths are the most
favorable. To estimate P consider a radio antenna cen-
tered on the focus of a point source and calculate P at
the edge of the antenna. Some reasonable numbers to try

CENTRAL RAY <]

‘ 58

FIG.1. Light from a point source in a Schwarzchild field.
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are A¢» ~ 15 m (antenna size),A ~ 1 m, [ ~ 10¢ m, and

¥ ~ 1018 m (star distance). P is then seen to be 10-16—
much too small to be detected. The conclusion is that
the region of large shear is so small that the antenna
would not measure P # 0 for a single point source. If an
extended source is considered, every point of the antenna
is a focus of some point on the star; however, the conclu-
sion is the same as before. Only an immeasurable frac-
tion of energy will be seen as high shearing waves, It
should be pointed out that P could be increased to 10-3

at the edge of the antenna by making observations close
to the dense star,e.g.,» ~ 105 m.

1943

CONCLUSION

Other applications can be considered, e.g., (1) polariza-
tion in the radiation coming from a collapsing star, (2}
polarization in the primeval fire ball due te inhomeo-
geneities, and (3) polarization in the primeval fire ball
due to an anisotropy in the Hubble expansion. All three
of the above are too small to be seen.

The conclusion is that in spite of the elegance of higher-
order optics in a curved space—~time, there seems to be
no reasonable observation which can detect a correction
to g.o.

'J. Ehlers, Z. Naturforsch. 229, 1328 (1967).

’L. Robinson and A. Schild, J. Matii. Phys. (N.Y.} 4, 484 (1963).
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It is shown that the transfer matrices for various Ising lattices in two dimensions commute with certain linear operators.
The problem of finding an explicit form for the largest eigenvector is considerably simplified. The expansion coefficients
appearing in the eigenvectors found as the solution of a set of nonlinear difference equations are Pfaffians. The

connection between this type of solution and other solutions is clarified. This form for the eigenvector also simplifies the
calculation of correlation functions. Some geometrical aspects of the Ising model are discussed.

1. INTRODUCTION

In an early approach to the solution of the two-dimen-
sional Ising model Onsager! considered a transfer ma-
trix which extended the lattice along diagonals., The pub-
lished version? analyzes extensions only along columns.
It is interesting that the diagonal extension offers many
advantages. A simple linear operator which commutes
with the diagonal transfer matrix was found by Onsager.?!
This result can be generalized to the triangular, hexa-
gonal, and rectangular lattices. The transfer matrices
for these cases are shown to commute with operators
linear in the algebra generated by the column and row
operators A and B. The eigenfunctions of these linear
operators can be constructed by solving a set of dif-
ference equations with certain symmetry porperties.
Using the diagonal transfer matrix we can write the
partition function as a single integral, symmetric in

the horizontal and vertical bonds, H, and H,, respective-
ly. The dual transformation is shown to be the diagonal
transfer matrix evaluated at H; = — Hy = % imi. Cor-
relations along the diagonal are obtained by a method
which uses the dual transform; disorder is easier to
calculate than order. The underlying geometry is found
to be Euclidean rather than hyperbolic.

Consider an Ising lattice whose sites, n per column,
are designated by spin variables pu, = + 1. Let the hori~
zontal and vertical bond strengths be Jy = KTH; and
J, = KTH, (see Fig.1). The transfer matrices which
represent the columnar and diagonal extensions, are,
respectively.

Well s Hy), o = TlexplHypypi ¥ Hypjug,,),  (1.1a)

’
iy

W(H,H,) (1.1b)

[Lp/ = E_I exP(Hlp'jp'} +H2uj“fi+l)'

The columnar transfer matrix W, can be represented
as the product of two operators V,(H{)V,(H,) with

B :ch,
"

Vi) = (2 sinh2H)"/2 exp(HB),

VylH,) = explHpA), A =151,
J

tanhH¥ = exp(— 2H,), 1 = sinh2H, sinh2H%.
.—T
~—
/u;- M }‘;‘—'}‘I
. Ha ' H,
d ' | o—————b M\
» AN "

(a) (b) (c)

FIG.1. Bonds appearing in diagonal extension (a), lattice deformed in
(b), and the usual columnar extension appears in (c).
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The operators CJ. and Sj are equivalent to the two Pauli
matrices 0% and L They can also be defined as

Sj(b(ul’..-,uj’...) = I‘ljé(l‘lli""“]’"“)' (1.33)
qu)(ul’...,uj’..-) :(i)(“l’...,»— uj’-..)' (1.3b)
Cyclic boundary conditions are imposed; Cin= C]., Siin

= Sj. The following single-spin representation is helpful.
Generalization to » spins is straightforward:

Ipyr=0lp = p)= 31+ '), (1.4a)
Cphpr=0(p + p") = 31— pp'), (1.4b)
S, = wolp — p) =3y + p). (1.4c)

With 1 standing for a column of sping pq++«p,, in this
representation one form of the dual transformation is
given explicitly by

Ly = W) D2 T 8= 0) + wi0lu; + )]
(1.5)

This operator is orthogonal in the even space, the sub-

space left invariant by the projection operator A, =

3+ U) where U = C,Cy---C,. In this subspace L
interchanges A and B. Also

LVy(H{)L =(2 sinh2H)»/2V,(HYA ,,
LV,(H,)L = (4 sinh2H ,)"/2V (HIA ,.

(1.6)

We will show in Appendix C that the dual transformation
is essentially the transfer matrix W(H,H,) evaluated at
H, =—1H, = t ir/4. Below we determine some of the
eigenvectors and eigenvalues of W and hence of L as
well,

2. COMMUTATION RELATIONS

In Appendix A we show that the diagonal transfer matric-
es W(H, H,) and W(H", Hj) commute if they have the
same modulus » defined by

k = sinh2H, sinh2H,. 2.1)

This modulus plays a multiplicative role under the dual
transformation as seen from

LW(H, Hy) L =knWWHE, HY)A,. (2.2)

At the critical point, H, = H¥;thus kb, = 1.

Transfer matrices for the triangular and hexagonal
lattices are given by (see Fig.2)
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WA(Hl’HZ’HS) = V2(H3)W(H1,H2), (2.33.)

W, oxlHy, Hy Hy) = WH,, Hy)V (H,) (2.3b)
A relationship exists between hexagonal bonds Hy, Hy, H;
and the triangular bonds H,,, H,3, Hyycalled the star-
triangle transformation (see Appendix E). It is express-
ed by the following equation which also holds when the
order of operators on both sides is permuted.
NH,,H,,Hg) is a function:

WH, Hy)Vi(Hg) = N(Hy, Hy, H)" Vo (H o W(H 3, Hyg)
(2.4)

Onsager! has used the star-triangle transformation to
derive the important result

[B + kA, W] =0. (2.5)
A simple calculation also gives this result, The vanish-
ing of the commutator Equation (2. 5) shows that there
exists a representation in which both W and B + kA
have the same eigenvectors. The latter is obviously
Hermitean while the former is normal. Thisisindicated
in Appendix A, The eigenvectors and the spin—spin
correlations along a diagonal can depend only on the
modulus k.

The simple method used to prove Eq.(2. 5) canbegenera-
lized to find linear operators which commute with the
various transfer matrices. Let W, and W, = V,71/2

W, V, 1/2 pe two equivalent transfer matrices for the
triangular lattice. Then the following equations hold
{see Appendix B):

[B+EA+hyAp, W ]=0, Ay=2.5.,CS,.,,
i (2.6)

[B +R4A + k3G, W, =0, 4G, =[B,A].

We introduce a notation to simplify equation with hyper-

bolic funetions

¢; = cosh2H, f" = cosh#l,, @7
§; = sinh2H,, s, = sinhH,.
Then
R1(C3)2 = k'cy = $,5,C5 + €1C4S5
By(E,)2 = — (852, Rjes = — s, (2.8)

The pseudo-Hamiltonians in Eqs.(2.6) are of course
related by a similarity transformation. The hexagonal
lattice is included in these results by the use of the star-
triangle transformation Eq. (2.4). In the limit of H, — 0,
a result is obtained closely related to a recentdiscovery
of Suzuki,® We find that V,(3H,)V;(H,)V,(3H,) commutes
with

B+ (2¢,55/C,)A — (5,/¢,)%4A,. (2.9)

Suzuki's result is equivalent to making a similarity trans-

FIG.2. Hexagonal
“~ lattice (a), and tri-
angular lattice (b)
deformed so that

their transfer matri-
ces can be represented
as in the text.

{a) (b)
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formation of Eq. (2. 9) with the operator gL, where L is
the dual transformation and g = 2#/2 [1, (C; + S,). The

pseudo-Hamiltonians in (2, 5), (2. 6), and (2. 9} are easily
diagonalized by introducing fermion operators. However,
it is instructive to proceed in a somewhat different
manner,

3. SYMMETRIC EIGENFUNCTIONS OF B + kA

A. Even space

Since the transfer matrix commutes with U, the space of
functions decomposes into even and odd subspaces. A
typical member of the even subspace is

&(p) = 2-’“’2(]‘.0 + _Efiju‘i“j +_ E ﬂjkl“iy‘juknz +oe ‘) .
i i%>k]
(3.1)

Now B + kA may be thought of as a Hamiltonian with %
as an interaction constant. {The ground state of — B —
kA determines the partition function.) At high tempera-
tures 2 — 0, so that B is the noninteracting part. Simple
considerations imply that &,(u), the ground state, is con-
stant in this limit, yielding the totally disordered state
while

%; Ly ®ole) = W/ DMo(p;~p;,0), k=0, (3.2)

is the totally ordered state, L interconverting order and
disorder. Let &,(u,%)be the ground state eigenfunction
corresponding to a particular modulus &, then generally

oL (3.3)

ut
From a group theoretic viewpoint, the transfer matrix
W(Hl, Hz) is normal and invariant with respect to the
cyclic group while B -+ kA is Hermitean and invariant
with respect to the dihedral group. The ground state
lies in the symmetric subspace, invariant to all group
operations, Thusf, j(k) in Eq.(3.1) is a function of the
difference ¢ — j. The interpretation of f;; as the probabi-
lity amplitude of finding spins j + 1,7 + 2,..., 7 identi-
cal while all other spins are opposite can be seen from
Eq.(3.3).

The sums present in Eq. (3. 1) define f;; for i > j. We
may extend f; ; antisymmetrically for other values.

fij +fji:0’ Jiu=0.

Boundary conditions imply the following restrictions,
coefficients of the ground state must satisfy

for1=fap=""" =f,1

The last equality is satisfied by imposing anticyclic
conditions f,; = —f, ., .. Only odd multiples of 7/n will

then occur in the Fourier series forf;,.

““'tbo(p,"k) = (bo(ug k_l)'

(3.4)

(3.5)

:fn+1,n

Higher coefficients f; ez €1C., can also be extended anti-
symmetrically (determinants are such examples), but
in our case we assume that f, ... and higher coefficients
can be represented by Pfaffiah forms

fijkl :fijfkl _fiksz i jk* (3.6)
This is just sufficient to solve all the resulting difference
equations by Fourier analysis. A fermion type solution
is recovered.
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Let us seek an eigenfunction of B + kA of the form of
Eq.(3.1) with fj = 1, the other coefficients vanishing in
the high temperature limit. Consider the equation

%)’ (B, + kA, JE() = 28(u). (3.7
If we multiply this equation by 1, Bibgs Mghhithght sy o o+, With

i> j> k> I,and sum over all y, = + 1, we obtain a

series of difference equations, the first two of which are

A=ntk2 [ (3.8a)
J

)‘fij :(n_4)fij +k[5i,j+1 +{fz;tl ;11} +Z /i Lkt l, &l

(3.8b)

{fisiond SFivr, Yoy tfijor v iy (3.9
The quartic term should have its subscripts ordered;
but 2 + 1,k always occur consecutively and ordered so
that

Figurie =Fike 16 = Teevie i

The three regimes can be written as a single sum over
k. If we eliminate A from Egs. (3. 8a) and (3. 8b) and use
the Pfaffian decomposition Eq. (3. 6), we obtain

4f ;= k[0 — 6,501 T {fi1,51}]

ij+1

B o1 —ipafyil (310)
Since the calculation was made for ¢ > j, the subtraction
of 6. , , preserves the antisymmetry of ;.. Higher
terms decompose similarly. The nonhnear equation
(3.10) describes the propagation of order along a dia-
gonal,

In the case of interest fi. is a function of ¢ — j. The last
term in Eq. (3. 10) is the’ difference of two convolutions,
so the equation can be solved by Fourier analysis.
Choose » even for simplicity and let

fp=1/n) 33 1, expilj — k)q. (3.11a)

q

8;, = (1/n) 2. expi(j — kg, (3. 11b)
q

g=xn/n+3u/n...,+ [(n—l)/n]‘n.

Restricting ¢ to odd multiples of 7/n satisfies the anti-
cyclic property of f;. Substitution of Eqgs. (3.11a) and
(3.11b) into Eq. (3. 10) yields a quadratic equation in %

k sing(1 +f§) =2i(1—*% cosq)fq. (3.12)

This equation can be readily solved by introducing an
angle ¢, and an amplitude Rq such that

(3.13a)
(3.13b)

R, sin2¢, = k sing,

R, cos2¢, = 1 — % cosg.

FIG.3. Euclidean triangle
of Eq. (3. 13).
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The two solutions are

' R —1+Fkcosq
—_ -4 7
; s ttand, = 5 Sing 5,10
q_>. R, +1—F cosq ‘ )
teotd, = sing

The first solution (— i tanqbq) has the proper high tem-

perature limit f, — 0. The other solution represents ex-
cited states within the symmetric subspace.

The relations defining R , ¢, in Eq. (3.13) are the geo-
metry of the Euclidean tr1ang1e in Fig.3. (A hyperbolic
triangle plays a similar role in the analysis of
V,12V,V,1/2; see Ref. 2, p. 135.)

The wavefunction can be normalized by evaluating

Ng2 =D 02u) = (1+D 3+ 5 oyt
“ i>j i>j>k>1

But squares of Pfaffians are determinants of skew-

symmetric matrices. If F is the » X n matrix with

components ﬂ , then the normalization constant Ng.

satisfies

N,2 =det +F)=|I +F|. (3.15)
B. Odd space
A typical member of the odd space is
d(p) =272 gy, + 20 & ijubtiHsbp
i i>j>k
2 Bymmbille byt ). (3.16)

i>j>k>1>m

At high temperatures where B dominates, the eigen-
function corresponding to the maximum eigenvalue of
B has g, constant and all other coefficients vanigh. To
obtain an eigenfunction with this limit we use our previous
procedure of extending the coefficients antisymmetri-
cally. We set g; = 1 and let

Lin=8&ij— 8 T &

(3.17)
Eijrim = Eijer — Eijem ™t ijim™ Eirim ™ Ejpims  ELC
Again we assume that g;;,, can be expressed as a
Pfaffian
Eijer = 8;;8r — Birn8j1 + 8118 (3.18)

The boundary condition g, ., ; ; = &;;, and the cycllc
symmetry condition g,., = gm,ﬁz b+ imply that &i;

a function of the difference ¢ — j. But now the boundary
condition is satisfied with only even multiples of 7/#
present in the Fourier series.

Multiplying the eigenvector equation by pu;, ;K4
gl b g s ® * and summing over all y; = 1+ 1 results
in a’set of difference equations which as before can be
solved by Fourier analysis. Let
&= (1/n) Z} g, expi(j — kg, q = + 2n/n+ 4u/n, "
(3.19)
then

g, =—itang, (3.20)

with ¢, determined from the same triangle as before.
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C. Triangular lattice

For the triangular and hexagonal lattices the eigen-
functions may again be taken in the form (3. 1), Choosing
the symmetric form for the transfer matrix of the tri-
angular lattice the pseudo-Hamiltonian is given by

B + kA + ky, A, in Eq.(2.6). The arguments leading to
{3.10) may be repeated exactly leading to the equation
determining the coefficients f, i

;= Ral6; 5,1 — 05,141 {ful,]il}] (3.21)
+ k2{5z G2 ; i+2 {fa¢2.;$2}
+k1§(fibfjk+1m ik+1fjk)

+ kz ? (fik—lfjkfl —fik-r lfjk-l)'

This equation can again be solved by introducing the
Fourier transforms (3. 11) with the result for the tri-
angular lattice

RqT—— 1+ %k, cosqg + k, cos2qg

f o=~y sing T E, sW2) (3.22)

where

RqT

=[(1 — &, cosq — k, cos2q)? + (k, sing + k, sin2q)2]V/2,
At the critical point, &, + ky=1,

4. CONNECTION WITH OTHER SOLUTIONS

The connection between spinors and fermion operators
was used by Schultz, Mattis, and Lieb4 in their solution
of the Ising model. To translate our results into their
lanFuage let us regard ®(u) as the representative

&) of some abstract vector | &), Let the vacaum be
denoted by |0}, such that {u |0) = 2-2/2 is the normalized
ground state at high temperatures,

Following Kaufman3 we introduce the following fermion
operators

b;=3CCy C, 4 SU,; — (4.1a)

I,

Cj)l;wl

b

oo

= é;ClCz' . 'C].,ls](l] + Cj)lj'Pl. o f 5

n

{4. 1v)

{661} =6,, b8} =0, etc.

Operating on the vacuum b; has the effect of multiplying
by u i In fact, a one—particle representation is

by =31,

_1
n blur = 2H.

In terms of these operators

lo) =1+ f001+ T
i>j

i>j>E>1

FBIBPL+ )10,
(4.2)

The Pfaffian nature of the coefficients and the fermion

commutation rules allow us to express Eq. (4. 2) in two

ways (Hurst® used the following forms to generate
Pfaffians):
l&,) = futs] +/£,;00D10) (4. 3a)

= exp(Z f:;676D10) (4.3p)
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The functional representation of any vector |®) may be
recovered by evaluating

(wl@) = 2/20IL (1+p b)) @), (4.4)

The quadratic form in Eq. (4. 3b) is simplified by Fourier
analysis. Let us use the transformation introduced by
Schuliz, Mattis, and Lieb4
= (1/Vn)e~its/%) 7, aqei]'q
q
a,= (1/\n)eiW4 75 pe-iia,
+ [{n — 1)/n]n.
The operators a, a'f satisfy fermion rules also. The

quadratic form becomes — 2 4 >0 tang a*a* The unnor-
malized ground state is

{4.5)

i
g==2%1/nt3n/n,.

|8, = ql;[o (1—ala’, tang, ) [0). (4.6)

With respect to this new vacuum, annihilation and crea-
tion operators are easily found.

In Ref. 2, Onsager introduced a Lie algebra as follows:

Ay=—B ——Z‘, C, A,=—UA,
=A=2,S, sm, 46, ;= [A,4,), @1
Ay *E S} lcjsj+15 [Gj:Ad = 2Ak+j - ZAk-j»
Ag _Z) 8;.2C51G8,, 1, ete.,  [G;,G,] =0
The operators A G, Were then Fourier-analyzed:
X, ¥, =(2n) 1121 Aetiad,
z, = (i/2n) g}l G, singj, (4.8)

A, :Z X, cosqj — Y, singj.

In the (even, odd) space ¢ is an (odd, even) multiple of
7/n. In terms of fermion operators we find

X, =n, +n_—1, n, =aya,
— gtgt — datat —
Y =al, ta,a, Zq—z(aqawq a_qaq).
= — 25 2 _y2 2=
[X,¥,]==2iZ, X:=Y2=z2=R, (4.9)

Rqu :Xq, ete,
In the even space the pseudo-Hamiltonian B + kA =
— Ay + FA | becomes

—ZZ}X 1—kcosg)+Yksmq
¢>0
or
-2 R(X cos2p , + ¥, sin2¢, )

g>0

But the coefficient of R . may be also written as X _trans-
formed by the unitary operator IT,, o expt ip,Z ) This
is an S matrix which transforms the nomnteractlng
ground state into the new ground state. Using (4. 10) we
obtain (4. 6) as before.

We have thus established the connection between the
different representations of the eigenfunction of the
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transfer matrix corresponding to the explicit Pfaffian
solution, the fermion solution, and Onsager's algebralc
constructmn

5. THE COEFFICIENT fj

The coefficient fij is not a correlation function but is
related to the existence of long range order in &. If f,.

shs . . . 7
has a positive lower bound when site ¢ and j are far
apart, then ¢ describes an ordered state, We will exa-
mine the asymptotic behavior in the case of an infinite
lattice. We have

fr+j,j :f(V):(l/n)E fqeiqr
q
"R(A) — 1 + k cosf (5.1)
f( )_2111‘/ % sing elriqg,

Let z = ¢, for k < 1 the singularities at § = 0,7 are
removable, and f(») can be expressed as a contour inte-
gral around the unit circle. This integral can be deform-
ed to surround the branch cut from z = 0 to k. Scaling
yields
£0) =R [T k2020 - V2L — k2112,
1 0

(5.2)
The substitution ¢ = exp(— s2) transforms the integral
into a canonical form for the study of its asymptotic
behavior for large ». The leading terms are

k7 1 +
(1 — 2)1/2 2V7y3/2

flr) ~ Okr+1), k<1, (5.3)

The vanishing of f(r) for 2 < 1 as v — « is related to
the vanishing probability of finding » consecutive spins
(+ 1) surrounded by (n — 7) spins (— 1) with » = «© in
the ordered state with modulus %-1,

The case for 2 > 1 differs in that the singularity at

6 = 0 is no longer removable. The integral, now con-
sidered as a Cauchy principal value, can be expressed
by an indented contour plus half the residue at z = 1,
the contour lying within the unit circle. This integral
may also be deformed around branchpoints z = 0, 2-1,
Similar analysis as above yields

14 1
— k2)1/2 oy 3/2
Here, of course, there exists a possibility of finding
correlated spins in the disordered state. It is interest-

ing to note that the long-range order in fr) is propor-
tional to (1 — 7/7,) for T < T,.

When # = 1, R(6) = 2|sin{6/2)], and

fry~1-L+ Olk7-1),

EoQ (5.4)

4 1 1 1
f(’):_<2r+1—21+3+2r+5“ ) (5.5)
4 e—Zrt
7 Y0 cosht at
11 1
f(’r) ~ ? ; + O(V3> (5' 6)

At the critical point, the exponential nature of the ampli-
tudes f(r) changes abruptly.
6. THE PARTITION FUNCTION

It is well known that the partition function @ per site is
determined by the maximum eigenvalue @, of the trans-
fer matrix
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Q@ =1lim (@

n —oo

BELN (6.1)
with

Z TR (6.2)

B
Substituting Eq. (3. 1) in Eq.(6.2) with f, = 1 and summ-
ing over all u, = + 1 we obtain
Q, =223, 11 (¢
[

122 +U-juj+1§1§2)q>o(}i)- (6.3)

The product in Eq. (6. 3) can be put into a familiar form
by introducing

B coshy = ¢,C,, B sinhy = §;5,. (6.4)

The eigenvalue @, can then be expressed in vector form

Q, = (28)7(0lexpyA| &,). (6.5)
To evaluate this expression it is convenient to take | )
in the form (4.6). From Eq.(4.9) the operator A = A,
takes the following form in the even space:

A=2 @O X%, (6.6)
q

* — _ .
X=X, cosq—Y sing. (6.7

Now X has the property (X )2 {0y = |0). Thus the left

vector (Ol expyA becomes

0 H ( cosh2y —cosq sinh2y — a_ a sing sinh2y),

(6.8)
and

Q, = (28)" I1(cosh2y — cosq sinh2y + sing sinh2y tang ).
q
(6.9)
Using (3.13) and (6.4), we get

Q, = quo 2(c e, +Rq). (6.10)
Taking the infinite limit » — «, we can express the par-
tition function as a single integral, symmetric in the
bond strengths:

(277)_1]07[ dae 1Og2 [Clcz + (1 + k2 — 2k 0089)1/2],
(6.11)
The transformation connecting Eq. (6. 11) with previous

integral representations obtained by Onsager is found
in Appendix D.

log@ =

7. THE CORRELATION FUNCTION

The calculation of spin-spin correlation functions ¢S,S ]>
was first accomplished by Kaufman and Onsager.” Thé
two spins were located on the same column and the
correlation function was obtained as the sum of two
Toeplitz determinants., Wick's theorem unknown at that
time was later used by Schultz, Mattis, and Lieb? in
their fermion approach to the Ising model, Correlation
functions were also considered by Montroll, Potts, and
Ward® who used the dimer? approach introduced by
Kasteleyn!? and by a number of other authors,11-13

The correlation function along a line is expressible

either as a single Toeplitz determinant or as the sum
of two such determinants depending upon which of the
symmetric forms of the columnar transfer matrix is
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used. In the limit of large separations ¢ — j — «, the
spin-spin correlation determines the square of the mag-
netization.

Using the Pfaffian form of the eigenvector Equation(3.1)
and the dual transformation, we can give a rather simple
derivation of the spin—spin correlations alang a diagonal
(7.1)

(S;8) =(@oR)IS;S;18o(k)), >,

where &, is normalized.

In the representation we have chosen the operators
S45Sy,+++ are not diagonal but C4, C,, -+ + are. The ex-
pectation value can be transformed by the dual L to the
C operators. Thus, in a sense, the calculation is effected
by computing the disorder at the reciprocal modulus.
From Eq. (3. 3) and the dual L, we have

LSS,L=C, 1C;.p
L|d (k) = 1&4(k~1)).

< C,A,, .2

Cyclic invariance implies that we can rewrite the spin—
spin correlation as

(S].Si) =@y )ICy - C, | k1), m=1i—}j. (7.3)
The operation of C, is to change the sign of any term
containing u,. Thus (S ].Si) can be expressed as the ratio
of two determinants, the denominator being, of course,
the normalization constant |7 + F(k-1)| from Eq. (3.15).
The numerator is also of this form. Thus

(8,8) = 1+ Flee) [/ 11+ Fle-2) . (7.4)

The components of the n X n matrix F(k-1) are given by

N

P (k1) = e e F, (k1),

rs r 8T rs

%z’, lsvsm}
€, = .
1, m<r<<n

(7.5)

Multiplying the m top rows and the m left columns of
I+ F by — i, we find that

(8,8) = (— )mlr—21 [ + Fe- )1, (7.6)

where I, is an » X » diagonal matrix whose first m ele-
ments are unity, all others vanishing. The n X # matrix
I + F{k-1) can be readily inverted by using Eqgs. (3. 11a)
and (3. 11b). Its components are

[1+ FEY))l =30, +(1/2n) Z)expi[2¢q(k‘1) + qlr — s)].
q
(7.7

The right-hand side of Eq.(7.6) becomes, after substi-
tuting Eq. (7.7), an m X m determinant generated by
exp2i¢q(k"1) = exp{Ziwq(k)]. In the limit n — 0, (5.5, is
represented by the determinant of anm X m Toeplitz
matrix T{m) whose components are Fourier transforms

of exp[2iy(8, k)]:

(S.S.

] it m

T, = oL ["do expliltr — )6 + 20(0)]},

1<sr, s<m, (1.9

) = 1T, (7.8)

with
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_ (— ei0(1 — ke i) 1/2(1 — ke-it)1/2 k<1
exp[244/(0)] :{ (1 — kle-10)1/2(1 — p-1g-16)-1/2 p > 1
(7.10)

The generating function for correlations along a diagonal
is simpler than the function for the columns which con-
tains four factors instead of two. The angle involved is
an element of a hyperbolic triangle.
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APPENDIX A
The product (WW’)W, pictured in Fig.4a can be written

(WW,)HH' :xél I} exP[llj(Hl}‘j + HZ}‘J'+1)

+oud HN FHG )] (A1
Each factor can also be represented by

(@, + BABOG = Ay, 1) + (y, + 82 )60 + 2, )

j+1

or in matrix form by

Ty=a,l+8,5+y,C+ GjSC, (A2)
with

@; = cosh{p(Hy + Hy) + pj, (H} + Hy)l,

vy = coshluHy — ) % Wy HD)

B, = sinh[ (Hy + Hy) + uf, () + Hy)],

;= Siﬂh[#j(Hl —Hy) + Bl 1(Hy — HY)].
Thus, WW’ can be expressed as a trace:

WW' = Trgl T, (A4)

Similarly for W'W let us call the corresponding matrix
T’ whose coefficients a;,ﬁ}, 'yjf, 6;. are related to the
preceding ones by
a;=ay
B; = p'j“';+18j’

7;’ = Y i
05 == ujua0y

(A5)

Following a technique similar to Baxter,1¢ we seek a
nonsingular matrix R independent of j such that

T].R = RT}..

FIG.4 The products (a) WW’ and {b) WWT,
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If there exists such a matrix R, then the operators W
and W’ will commute, It is sufficient to examine matric~
es of the form R = a + 6C. A pair of linear equations
result from this choice of R in Eq.(A6). Eliminating «
and 4 from these equations, we obtain the condition

sinh2f | sinh2H2 = sinh2H sinh2/,.

Examination of Fig. 4b indicates that a similar procedure
can be used to prove that W is normal:

W, w*] = 0.

APPENDIX B

We will consider the more symmetric form of the tri-
angular transfer matrix
H,)Vy(3H 5). (B1)

Premultiplying W, by C; + kZS].,IC].S

WS(HU Hz,H3) = Vz(%Hg)W(Hls

j+1» We obtain

(1+ kzl-ij-lli]q) exp|— H3I~1j(llj-1 + qu)
— 2(H 1 MK +1 + HzlJ- ﬂrl)](w )W .
The choice of k, = — tanh?H, = — §,2/¢42 simplifies

the factor depending on H,; which becomes with the no-
tation of Eqs.(2.7)

€372[e3 — 5“\7(“]'—1 + Hj.1)83]. (BZ)
Similarly, postmultiplication yields
Ey2[cy — Buu)y + whq)sg] exp [— 2 H o)
+ Hopp i)W,), ] (B3)

Subtracting the two forms and then summing over j we
find after some detailed algebra that

[B + kZAZ’ Ws

which is Eq. (2. 6) with 2, and &, given by Eq. (2. 8).

Interchanging H, and H, in Eq.(B4) and then taking the
limit H, — 0, we obtain a new result that

1(s,/cy)[A, B]} = 0.(

] = €572(s;8505 + €1C383)[A, W, ]. (B4)

[VL(H)V (), B + (c;s,/c,)A + )
B5
The operator in Eq. (B5) can be put in a summetric form
by multiplying by 2¢,/s, and using Eq. (1. 2). The pseudo-
Hamiltonian becomes

(xy + x5°1)B + (x] + x7 1A + 3[A, B], (B6)

* *
xi = tanhH], x, = tanhH,.

APPENDIX C

We will now exhibit the relationship between the dual
transformation and the diagonal transfer matrix eval-
uated at H; = — H, = +37i. This result is suggested by
the fact that the modulus % is unity at the critical point
and also at the above values of H, and H,. Consider

W(ini,— ami) = U 2-1/2(1 + i) 27V 2(1 — dpy g p))
(C1)
; + ”] 1)]

=11 [8(p; — boq) + 2pp0(p,
7
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But unity may be expressed by
1= E—I é(l - ifJ-]‘)(l + i“]’—]_)y

1= l]_[ [5\11]- — I-Lj_l) - iﬂjo(“j + Uj_l)]-

Thus multiplying Eq. (C1) by Eq. (C2), we find that
Wi, — 57 + ui)], (C3)

i)= Hj [60p; —mg) + wi(u,

which aside from a normalization constant is essentially

the dual transformation. Complex conjugation of Eq. (C3)
completes the demonstration.

APPENDIX D

Two integral representations found by Onsager for the
partition function are

logQ = 3 log2s, +

:—f_d(z‘ f

L dg cosh-l(cic, — sis, cosf),
(D1)

d6, log4(c,c, — s, cosf, — s, €COSO,).

(D2)

Equation (D2) was actually given over a smaller domain;
but this is compensated by the numerical factor. Con-
sider the transformation

0,=130 +w, 0y=3%0—o0w, (D3)
which effects a rotation of 7/4 in the coordinate system.
Judicious translations by 27 enable us to obtain a do-
main of integration; 0 < 4 < 27, 0 < < 27. Integration
over w is easily performed by notmg that

L r2n dw 1 + b + inw)
or fo w log(a cosw + ¢ sinw
= logy{a + (a2 — 2 — ¢2)1/2], (D4)
Finally we obtain Eq. (6. 11):
1 (" 2 e
logQ =5~ fo dd log2[c ¢, + (1 + k2 — 2k cosh)1/2].
(6.11)
APPENDIX E

The star-triangle transformation was mentioned briefly
by Onsager in Ref. 2 and later in his talk at the Batelle
Institute.! We would like to make some observations on
the geometrical significance of this transformation.
First let us define it. The hexagonal Ising model has a
coordination number of three so that the spins at a
selected set of sites can be summed to get a triangular
lattice. At any one such site we have (see Fig.5)

ST K \
L 4
K,
FIG.5. The star-triangle
Ib ID transformation (ST) combined
with the dual transformation
- (D).
H, K;f Kcr
AN
»
He H, &
Al



SOLUTION OF THE ISING MODEL

(a) (b)

2 cosh(H u; + Hopy + Hglig) (E1)

= NexpKpopg T Kypgpy + Kgbapa):

From (E1) we extract three equations, one of which is

XXy = (ylyg + y3)/(1 + y1y2y3),

(E2)
x; =tanhH;, y,= tanhK ..

The others are found by cyclic permutation. We can
solve for x; by considering (x,x,)(x3%)/(x ,x5); but
solving for the triangular bonds is slightly more diffi-
cult. The solution is

Y1*ys " = (T xgN)/(L+ x5 Yy ),
x;* = tanhH, %, y,* = tanhK; *.

etc.,
(E3)

Equation (E3) is in the same form as (E2) with x and y
interchanged, and the bonds are replaced by their duals.
This completes the proof of the transformation implied
in Fig. 5. From (E2) we can obtain two sets of equations
which are related to the laws of sines and cosines. They
are

sinh2H sin2hH sin2H, 15
1 - 2 - 3 , (E4a)
sinh2K,*  sinh2K,*  sinh2K3*
cosh2K 1* = — cosh2K,* cosh2K.*
+ sinh2K,* sinh2K.* cosh2H,, etc. (E4b)

Onsager?! noted that the hexagonal bonds 2H,, 2H,, 2H;
and 2K,*, 2K,*, 2K;* were sides of mutually polar hy-
perbolic (hyp.) triangles. He also noted that the sextuple
2H,,2K,*, 2H,, 2K *, 2H,, 2K,* in that order formed

the sides of a completely right-angled hyp. hexagon.

The two representations are, of course, related, but it is
to the latter that we address ourselves. If we can derive
the relations (E4) from the right-angled hexagon, we
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FIG.6. (a) The right-angled hyperbolic
hexagon, (b) right-angled pentagon, and (c)
a right triangle.

()

will have proven the geometrical equivalence. In hyp.
geometryl6 any pair of nonintersecting (this excludes
parallel) lines has a unique perpendicular line. Thus,
there exists a unique perpendicular to the lines contain-
ing 2H, and 2K, * [see Fig.6a]. This perpendicular
divides the hexagon into two right-angled pentagons.
Now a right-angled pentagon has the property that the
hyp. cosine of any side is equal to the product of the
hyp. cotangents of the adjacent sides and also to the pro-
ducts of the hyp. sines of the opp. sides.7 Thus in Fig.
6b

coshA = cothB cothE = ginhC sinhD, etc. (E5)
These equations (E5) may be used to obtain the trigono-
metry of the hexagon in the same way as a general tri-
angle is analyzed by dividing it into two right triangles;
Eqgs. (E4a) and (E4b) are obtained. Indeed there is a
complete similarity between the rules for a right-angled
pentagon (E5) and a right triangle in hyp. geometry, A
mapping of the five elements of each exists.

There is a mnemonic device due to Napier which gives
the trigonometry of a right spherical triangle. This de-
vice can be generalized for hyp. right triangles and are
sometimes called the Engel-Napier rules. These rules
coincide exactly with those of the pentagon with the
following prescription: Let the sides and angles of a
right hyp. triangle be A4, B, C, and A, i as in Fig. 6¢; the
presence of angles X, p is inconvenient so we replace
them by hyp. elements L, M for which they are the angles
of parallelism.18 Thus A is the complement of the guder-
mannian of L or

cosk = tanhL, cosp = tanhM, (ES6)
Then the elements A*,C,B*, L, M related to the right
hyp. triangle may be assigned in that order as consecu-
tive sides of a right-angled pentagon. The same trigono-
metric equations hold!
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On the inverse problem for a hyperbolic dispersive partial differential equation
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The inverse problem for a two-dimensional (space-time) hyperbolic partial differential equation, with coefficients, functions of
the spatial variable only, is considered. Exterior to a region of compact support in the spatial variable, the equation reduces to
the wave equation, and, from knowledge of the solution in the exterior region (namely in terms of reflected and transmitted
waves for a prescribed incident wave), the problem is to deduce the coefficients in the interior region. This is achieved by treat-
ing the problem as a Cauchy initial value problem and using the Riemann function to deduce a dual set of integral equations.
The coefficients or linear combinations of them are deduced from the solutions of the integral equations. The question of
uniqueness is partially answered, by estimating the domain of convergence of the Neumann series. The application of the
analysis to electromagnetic scattering from a slab of varying conductivity and permittivity is indicated.

The inverse problem consists of determining the coeffi-
cients of a partial differential equation from the know-
ledge of the asymptotic behavior of the solution.1—4 In

many of the physical problems involving spatial and time-

independent variables, with the coefficients depending
upon the spatial variable only, the analysis is based
upon the determination of the coefficients from the
spectrum of the partial differential operator associated
with the spatial variable. The time-dependent approach
was considered by Kay,%6 who transformed the Gel'fand
~Levitan equation? into a resulting time~dependent
integral equation. Sondi and Gopinath® and recently
Niznik? have examined the time-dependent problem
directly.

Here we consider the time-dependent inverse problem
directly by making use of the theory of hyperbolic dif-
ferential equations. The equation to be considered, of
two independent variables, has coefficients functions of
the spatial variable only, but contains a dispersive term,
i.e., a term involving the first derivative of the time
variable. It is shown that a dual set of generalized
Gel'fand-Levitan type integral equations are obtained,
involving the transmission and reflection coefficients.
The solution of these equations leads to the determina-
tion of the unknown coefficients of the original partial
differential equation. Application of the results to elec-
tromagnetic scattering is considered.

CAUCHY PROBLEM AND THE SCATTERING
OPERATOR

The differential equation to be considered is the follow-
ing

Uy — Uy + Alx)u, + Blxhu, + Clx)u = 0, (1)

where A, B and their derivatives and C and continuous
functions of compact support vanishing outside the do-
main 0 < x < I. B(x) will be taken to be negative corres-
ponding to most physical situations where energy is
absorbed. An application of the above differential equa-
tion to electromagnetic theory will be given below.

For an arbitrary incident wave ui{x — t) propagating in
the direction of the positive x axis, such that u¥(s) = 0
for s > A, there is no loss in generality if we take A = 0,
since this can be achieved by a linear transformation of
the variable ¢, without affecting Eq. (1). Hence we will
consider the class of twice continuously differentiable
functions #is) which vanish for s > 0. It follows that
Eg.(1) subject to initial conditions

ulx, 0) = uilx),

can be transformed to a Volterra integral equation for
t = 0,from which it may be deduced that u(x,?) = 0 for

u,lx,0) = —ul (x)
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x — ¢ > 0. In addition it can be shown that, for x < 0,
ule, ) =uilx — ) +ur(x +¢),

where the reflected component %”(s) vanishes for s < 0
and that, for x = [,ulx,#) = ul(x — t), where the trans-
mitted wave satisfies the causality condition ui(s) =
0,s>0,

For an arbitrary incident wave of the form ui(x + ¢)
propagating in the direction of the negative x axis, the
class of twice continuously differentiable functions to
be considered will be those for which ui(s) = 0 for

s < 0, These will give rise to reflected wave component
u7{x — ¢} in the domain x = I, such that u7(s) = 0 for

s > 21 and a transmitted wave ut{x + {) in the domain

x = 0, such that u¥s) = 0 for s < 0,

In order to obtain the functional relationship between
the reflected, transmitted, and incident portions the
following lemma is needed.

Lemma: The solution to Eq. (1) subject to conditions
at x = p, where v lies outside 0 < x <,

ulp,t) = vlv — 1) +wly + ¢),
w, (v, ) =v'v—1t) +wv +1§)

is given by

ulx, ) = exp[-;;fxu [AlT) + B(T)]d'rJ
x (w(x +t)— f;y_xK_(x,y, viwly + t)dy>
+ exp [g [lat ~ B(‘r)]d'r:l

X (v(x — 1) — j:u’x&(x,y, vvly — t)dy>, (2)

where K, (x, ¢, v) satisfy the differential equation
2 2
9° _ 9%, B(x)<a— PN Di(x)]Ki -0
9x2 912 ox  of

and boundary conditions

K,(x,2v—x,v) =0,
u
K, (x,x,v) :—éfx D, (7)dr,

with D (x) = Clx) — LA'(x) £ LB'(x)4(B2 — A2),

A direct proof is obtained by expressing Eq.{(1) in terms
of characteristic coordinates (£, 7), where £ = x + ¢
and 1 = x — {, yielding the following differential equation:
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L(¢,n)u = 0,

Then on employing the Riemann function® g(&, 7, £g,10),
which satisfies the adjoint equation, and the following
boundary conditions

g = exp éf;f;n[A(T/Z) + B(T/Z)]d7> for § = &,
tno
g:exp(&fgm [A(7/2) — B(7/2)]d > for n =1,

it follows that

+ [wgl, — f S (&)t + f v(n)dn,
where the integrals are along the line £ + 7 = 2y and

P and @ have characteristic coordinates (2v — ng, 1)
and (£, 2v — &), respectively. The first integral is
reduced by noting that g as a function of £, and 7, satis-
fies the differential equation

u(éo; 770) = [Ug]p

L(go, 770)8r =0

and boundary conditions the same as above. From this,
the differential equation and boundary conditions for
3g/0t as a function of (£4,M0) are easily obtained. Upon
transforming of the variables, ¢ =y + {,n=2v —y — ¢,
£g =x t {,and ny = x — ¢, the resulting expression in
terms of K _(x, vy, v) is obtained. The second integral is
reduced in a similar manner.

Expression (2) with x = 0, v = I, may be employed to
obtain the following functional relationship between the
incident, reflected, and transmitted components:

wile — ) +urly + 1) = exp[%fol(A —B)d-ﬂéﬂr(x s

+ fle—x&(x,y,l)ui(y—t)dy>- (3)

From the differential equation and associated boundary
conditions for K, it follows that K, may be decomposed:

K+(x: t, l) = L+(x - t) + M+(x + t)’

x=<0, x=i¢=2l—y,

where
L{s)=LS(—21) fors=2l,
M[(s)=0 fors=0,

M) +L(—2)=0, L[0)= %f()lD+(T)dT

If the domain of definition of M, (s) is extended as follows,

Mfs) =M[21) fors=z= 2l

Eq.(3) can be partitioned to yield

ui(n) = exp [%fl A4 — B)d{,é,tﬁ('r]) + f0L+(17 — s)ui(s)ds>’
0 " (4)

l 0
wr(8) = exp(% [a- B)m) M + shetshds (5)
for transmitted waves ul (s) which vanish for s > 0. The

above yields uin) = 0 and ur(¢) =0for n> 0 and £ < 0,
respectively.
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The inversion of (4) yields the forward scattering opera-
tor (with direction of incidence along the positive x axis),
mapping the incident wave into the transmitted wave

i) = exp| — 1 f'1a B)dTKti(n) + L1 = Sui(syas),

(6)

where

0

T,(n) + L () + f L (n—y)T,y)dy =0, n=0, (6)
n

The back-scattering operator (direction of incidence

along the positive x axis), mapping the incident wave

into the reflected wave is given by
0 .
ur(§) = f_€R+(£ + sheils)ds, )
where
R (&) =M (&)

+ [?M+(§ + )T, (y)dy. (7)

In a similar manner the scattering operator may be ob-
tained for the direction of incidence in the negative x
direction. K _(x,¢,0) has the decomposition

Kx,t,0)=—L{x—)—-M(x+1t), x=l—x=<t=gx,
where

L(s)=L(2)) fors= 2l

M(s) =0 for s> 2l

M) +L(2)=0, L(0)=—1 fOlD_(T)dT.

Extending the domain of definition of M _(s) as follows,

M(s)=M{0) fors=< O,

one obtains

ui(§) = exp —[%f (A +Bd7]< H(£) +f L{t— s (s)ds)
! 21-n (8)
ur(n) = exp —éfo a4+ B)d7>f0 M{s + nui(s)ds, (9)

for transmitted waves «!(s) which vanish for s < 0. The
forward- and back-scattering operators are obtained as
before:

ul(t) = exp {%f:m + B)d{l(uf(g) + fog T(&— s)uf(s)ds),
(10)

ur(n) = fOZHR_(s + Nuils)ds, (11)

where

T(&) + L&) + LEL_(ﬁ —8)T(s)ds =0 for&=0, (12)

R n) =M (o) + [ M n + )T w)dy. (13)

RELATIONS BETWEEN THE SCATTERING KERNELS

The scattering kernels R ,, 7, are not completely inde-
pendent of each other. To develop relationships between
them, consider first the case of the incident wave pro-
pagatmg in the positive x direction. Equation (2) with

v = 0, combined with causality, is used to obtain, for

x = 0 x> t,
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uilx —¢) — f_:K+(x,y,0)14§(y — Hdy + Glx)
X <u:(x +t)— [iK_(x,y,o)uz(y + t)dy> =0, (14)
where

Glx) = exp(— f()xB(r)dr>

Since u? may be expressed in terms of » which is ar-
bitrary, the above yields

(15)

K (x,4,0) = G(x)<R+(x +t) — f_jK_(,x,y,O)R+(y + t)dy)

(16)
for —x = t < x,x = 0. In particular, for x = [, it follows
from the differential equation that K (x, {,0) may be
decomposed in the form

K, (x,£,0) =GP, + 1) + 0 (x— )],
P(¢) =R (&) + f R {(s)L_(£ — s)ds, (17
= f M,(n + )R ,(s)ds, n=0, (18)

Note that P,(£) and @_(n) vanish for £ < 0 and n = 2,
respectlvely, and that’ P (¢) is constant for ¢ > 21. Usmg
the identity

X

1-— fo+(x,y,0)dy = G(l)(l - f‘K_(x,y,O)dy>, x =1,
- -X

one finds the value of the constant to be M (0); hence

P.(£) =M _(0)

On employing Eq.(2),for x = I,¢ > x, one obtains an equa-
tion similar to Eq.(14), but with the right-hand side
replaced by

I
ullx —#) exp<§fo A— B)dT).

Since u! and u7 may be expressed in terms of »? using
the scattering operators, one obtains, for arbitrary u?,

=G[e, (19)

This last equation allows one to compute 7, from know-
ledge of the kernels T ,R,.

The case for propagation of the incident wave in the
direction of the negative x axis is treated in a similar
manner. For x < [,and x < ¢ = 2] — x, one obtains

for £ = 21,

T,(n) (n) + M_(0)] forn=0,

GUK (x,t,1) + G(l)(R_(x +8)+ f:l_tlg(x,y, DR (y + t)dy>

=0 (20
and, in particular for x = 0,
K(x,1,0) =— GU{Px + &) + Qx — 1)},
where P_and @_ are defined as:
PO =R + [* RASIL, (&~ o)ds, (21)
QM) = [ :IR_(S)MJT) + s)ds, (22)
and it can be shown that,
P(t)=M_(2)) fort= 0,
T(n) = GD[Q_(n) + M (21)] form= 0. (23)
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INVERSE PROBLEM

The inverse problem consists of determining the co-
efficients A, B, C, when the scattering kernelsR , T,
and the attenuatlon factor

G(D)- exp( j B(r )

are given. In actual physical practice, these kernels
are measured directly by using incident waves which
closely approximate a delta function.

First consider the case where the direction of incidence
is in the positive x direction. For a fixed x, lying in the
domain 0 = x < /,use Eq.(2) to express u,(x,{) in terms
of the incident and reflected components on the boundary
x¥ = 0. Similarly express u_(x, {) in terms of the trans-
mitted component on the boundary x = I. Equate these
two expressions, and represent »: and 47 in terms of
ul, by employing the scattering operators. Since u! is
arbitrary, one obtains the following integral equations:
L,bc—1£)+GWS, k) — Gk [ K(x,y,0)s,(y, dy
= (24a)
K (x,t,1)

=10 U7 (24p)
where Egs. (24a) and (24b) hold for x < t < 2] — x and
2] — x =< ¢, respectively, and

S.(y,t) =R y+t)+fR (y + s)L (s — t)ds.

In a similar manner, the following set of integral equa-
tions is obtained for the direction of incidence in the
negative x direction:

27-
CL(x —8) + GUSx, ) + GO [ K (x,y,DS_y, dy

X

(25a)

— K (x,4,0)G(x)

= ,  (25b)
0

where Egs. (25a) and (25b) hold for — x < { < x and
t = — x, respectively, and

S,t)=R_(y +1t) + f;R s + y)L (s —t)ds
For fixed x, the above constitutes a set of integral equa-
tions, where L, and S, are known functions since they
can be determined from R, and 7,. However, G(x) is
unknown, but, for fixed x, can be taken as a parameter
which occurs linearly, if one solves for the unknown
quantities K (x,4,1) and G(x)K_(x,¢,0).

Note that if only R, and T, are known, then system (24a),
(24b) only would be used. However, Eq. (24b) is a
Fredholm equation of the first kind (with non-self-
adjoint continuous kernel). For ¢ = 2] + x it can be
shown that this equation is independent of ¢, and thus
need only be considered for ¢ in the interval

2]l —x =< t = 21 + x. The question of uniqueness for this
equation (which remains to be proved or disproved) is
extremely critical, since the dimension of the null space
of the operator could be infinite, in which case there
would be an infinite set of solutions.

However, if R_and 7 are also known, then the system
(24a), (25a) may be used, yielding a Fredholm equation
of the second kind (with continuous kernel). At x = 0, it
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is seen that (24a) yields K (0, ¢, I) directly, and,x = I,
Eq.(25a) yield K (1, ¢, 0) directly. This suggests that

the Neumann series should converge in some neighbor-
hood of x = 0 and x = [. Since the kernel depends upon
the values of R, (s) for 0 = s = 2], T.(s) for 0 = s = 2x,
and T,(~ s) for 0 = s = 2(I — x), by taking a sup norm

of these quantities over their respective intervals and
estimating the norm of the operator, it can be shown that
there is a neighborhood about x = 0, and x = [, for

which the Neumann series converges. For strong enough
conditions imposed upon the coefficients A, B, and C, the
Neumann series will converge for all values of x,
O=x=1

Apart from the above case, the question of uniqueness
remains to be answered. Since the solution will be re-
quired for x in 0 < x = [, nonuniqueness would not pose
a problem (from the practical sense) if it occurs only
for a discrete set of values of «.

If system (24a), (25a) is used, will their solution satisfy
Eqs. (24b) and (25b) ? This can be partially answered as
follows. Define the left-hand sides of (24b) and (25b)

as f(x,1) and g(x, t), respectively. Then f(x,¢) and
g(x,t) will be constant for t > 2] + x and t < — 2 + x,
respectively. If K (x,¢,1) and K_(x,¢,0) are solutions of
(24a) and (25a), it can be shown, using the relations be-
tween the scattering kernels, that f(x, ¢) and g(x, ¢} must
satisfy a set of coupled integral equations not containing
K _or K_. These can be reduced to a single homogeneous
integral equation of the second kind for either g(x,¢) or
f{x,t). Hence,if it has only the trivial solution, then
f{x,¢) and g(x, () must vanish identically. In this case
the solution of system (24a), {25a) will automatically
satisfy (24b), (25b).

Once the solution of the set of integral equations has
been found in the form

K(x,t,1) = G(x)K1(x,t) + K2(x,¢),

G(x)K (x,1,0) = G(x)KYx,¢) + K2(x,¢),

where G(x) is the unknown parameter, B(x) has to be
determined. This is achieved by employing the boundary
condition

K(x,x,1) — K{x,x,0) = L (0) + 1B(x),
which yields the following nonlinear differential equa-
tion for G(x) as a function of x:

1 dG

57 = K2(x%,x) + Gx) [L,(0) + KX(x,x) — K2(x,%)]

— [6(0]2 KX (x, ).

This equation is linearized upon the substitution

1 dH(x)

Glx) = dx ’

[2H(x)K N x,x)]

yielding a second-order linear differential equation for
H(x). Since G(0) and G(I) are known, boundary conditions
can be imposed to determine any arbitrary constants,
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B(x) is then determined from the relation

d
B(x) = — - In[G (x)].
The remaining coefficients are determined from the
boundary condition

K (x,x,1) + K_(x,x,0)
= fo"[c ~1A2 + {B2)dr — LA(x) + L (0).

However, this will yield only the following combination
of A and C;

Clx )f—Az( )———~A( )s

and either A(x) or C{x) must be prescribed initially, to
determine the coefficients explicity. In the example,
that follows C(x) = 0.

APPLICATION TO ELECTROMAGNETIC THEORY

Maxwell's equations for electromagnetic propagation

in a direction along the z axis normal to a slab of vary-
ing permittivity €(z) and conductivity o(z), reduce to the
following equation for the electric intensity:

E,,— e@)p,E, (26)

zZz

G(Z)p,OE =0,

where the permeability 1, is constant, Exterior to the
slab of thickness L,i.e.,z < 0 and z > L, the permitti-
vity is constant € = ¢; and ¢ = 0. Both € and ¢ will be
assumed to be sufficiently smooth functions of z so that
the preceding analysis holds and that ¢ will be positive.

The equation will be transformed to the form of (1), by
a change of variable from z to x as follows (similar
analysis was used by Sharpell):

¥4
x = fo [noe(s))i2ds, 1=x(L).
Equation (26) reduces to the form

E.,~ E,+ A(x)E, + B(x)E, =0,

Alx) == Zlnod 2,

g B(x) =~ o/¢,

for which the preceding analysis may be employed.
Once A(x) and B(x) are known for 0 < x < [, e(z) and
o(z) can be recovered through the following relatlons

[ho€o]t22 :fo exp(—fo A(s)ds)dq—,
[e2)/€p]2/2 = exp <f0'xA(1')dT> ,
olz) = —

€(z)B(x(2)).
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The structure of the totally symmetric unit tensor operators {and their conjugates) in U(#) is examined from the viewpoint
of the pattern calculus and the factorization lemma. The geometrical properties of the arrow patterns of the fundamental
projective (tensor) operators are demonstrated to be the origin of the existence of simple structural expressions for a class of
reduced matrix elements of the totally symmetric unit projective operators. An extension of the pattern calculus rules is
given whereby these matrix elements can be written out directly. This class of reduced matrix elements is sufficient to per-
mit the construction of the general totally symmetric unit tensor operator. The canonical splitting of the multiplicity in
U(3) is similarly shown to be implied uniquely by the geometrical properties of the arrow patterns of the fundamental pro-
jective operators and their conjugates. This fact is used to construct explicitly the class of U(3) unit tensor operators having
maximal null space. Explicit expressions for a large class of Racah coefficients are also given, and the implications of their

limit properties discussed.

1. INTRODUCTION

One of the fundamental problems in the application of
symmetry techniques to quantum mechanics is the con-
struction of a suitable basis for the set of all operators
mapping the set of all unitary irreducible representa-
tion spaces into itself. As is well known, such operators
may themselves be characterized by representation
labels—this is the tensor operator classification. This
classification is, however, incomplete for the general
case. Specifically, it is incomplete in the sense that
there exist, for the general case, several tensor opera-~
tors which are labeled by the same state vector labels
(the so-called Gel'fand patterns which specify the sub-
group properties), and which map a specified irreducible
representation (irrep) space [m], into a specified irrep
space [m’'],,.
It was early shownl that a basis for the set of irreduc-
ible tensor operators transforming like the state vector
labeled?

< (], )

(M)n—l

could be labeled by a second set of patterns {(I‘)n_l},
which is in one-to-one correspondence with the subgroup
labels {(M),_4}, i.e., for specified irrep labels [M],, the

two sets {(I'), ;| and {(M),__,} are equal. This ledl to
the designation

(F)n—l
(M],

(M), (1.1)
for a unit tensor operalor or, as it is also called, a
Wigner operator.

Despite the equality of the numerical arrays contained in
the two sets of labels {(T'),_,} and {(M), ,}, the struc-
tural significance of the set {(I")n_l} is completely dif-
Jeventl.3.4 (unless otherwise proved) from that of
{(a),_,}, since this latter sei of (Gel'fand) labels derives
its significance entirely from the existence of the Weyl
branching law for the subgroup chain

Umn) DUm —1) D~

2 U(1). (1. 2)

No such law is known to hold for the set of patterns

1957

{(I‘)n_l}. Accordingly, we refer to (I'),_; as an operator
battern and (M),_, as a Gel'fand pattern to emphasize
this distinction. [An exception occurs for n = 2 where a
very special type of transformation between operator
patterns—isomorphic to a U(2) transformation—may be
defined.5]

What then is the significance of an operator pattern?
Finding a complete answer to this question comprises,
we believe, the principual unsolved problem in lhe theory
of tensor operators in the unitary groups. We make this
assertion because the formal algebra of the U(n)

Wigner operators has been given completely, starting
with the work of Ref.1 and continuing through the work
of Refs, 3-6. (The significance of the associativity law
for the multiplication of Wigner operators was first
noted in Ref.6.) It is a remarkable fact that the structure
of this algebra—-termed the U(n) Racah-Wigner calculus-
can be given, knowing! but a single structural feature of
the operator pattern (I'),_,: The Wigner operator (1.1)
maps an arbilvary vector belonging to the irrep space
labeled by [m], into either the zero veclor or into a vec-
lor belonging fo the ivvep space labeled by [m], + [A(T)],,
where

[a(D)], = [A1,(D)Aa, (D) - A, (T, (1.3a)
i i-1

A (D)= 2T — 2 Tiy (1. 3b)
=1 j=1

L, =M, (1. 3¢)

Consider now that we select any operator pattern?:

<[M]n )

(1),.1/"

Then [A(T)],, follows from the rule (1. 3). We call each
such [A(T)], a A pattern belonging to [M],. The mapping
(1. 3) of operator patterns onto A patterns is clearly
many-to-one, in the general case. (Whenever it is one~
to-one, the Wigner operator is uniquely labeled by its A

pattern. This occurs, for example, for all the totally
symmetric Wigner operators, {(p00- - 0).)

(1.4)

Suppose we now select any A pattern [A], belonging to
[0£],. Then the set of Wigner operators

J. Math. Phys., Vol. 13, No. 12, December 1972
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(1), )
S [M],, 1\ : all (T'},_, such that / (1.5)
( g [a(D),, =[Aa],; (M),_1 arbitrarys
I\, " )

defines the multiplicity set of Wigner operators having
the prescribed pattern [4A],.

The principal problem alluded to above can now be stated:
To understand and elucidate the structure which diffeven-
tiates between the Wigner opevators {[M],) belonging to
the multiplicity set of a prescvibed A paittern. This im-
plies tha!l one must also determine that stvuctural pro-
perty which assigns a definite opevator paitern to a spe-
cific Wigner operator in the multiplicity set. (In this
motivating discussion, we have assumed implicitly that a
solution exists and is unique.)

This program appears to be, and is, a sizeable under-
taking, particularly, when we insist that there exists a
canonical solution (to within equivalence, if necessary),
where we use the term canonical in the sense of being
free of arbitrary choice8 aside from phase (1).

Let us now inquire as to what properties of these Wigner
operators belonging to a given multiplicity set could
possibly distinguish among them. The first property
which comes to mind is the null spaces of the opera-
tors.® The null space of the Wigner operator (1. 1) is the
set of all irrep spaces which are annihilated by the opera-
tor, i.e., the set of all irrep spaces with labels [m], such
that

(r)n-l
(M], ], =0 (1.6)
(M), 4 (m)

for all Gel'fand patterns (m),_; and (M),.,. The exis-
tence of such null spaces is assured by the properties
of the intertwining number—the number of times an ir-
rep [m’], is contained in the direct product [M], ® [m],.

Let us be explicit and state the three structural proper-
ties which we believe will ultimately be proved, and
which will be decisive in establishing the existence of a
canonical labeling for all Wigner operators of U(n). Let
(Ty), (T'g), ..., (L) denote the operator patterns belong-
ing to a given multiplicity set, and let 0U(T',),2 = 1,2,
..., M denote the null space of the corresponding
Wigner operator:

Conjecture 1: The operator patterns are simply or-
dered by the inclusion property

N(T;) D UTY) D * -+ D N(T)

of the null spaces.

Conjecture 2: The unique numerical assignment of
the labels in an operator pattern is a consequence of
limit propervties.*

Conjecture 3: The uniqueness of the canonical label-
ing is a consequence of the indecomposability10 of the
associated Wigner operators.

A proof of these three conjectures would constitute the
basis for the canonical resolution of the tensor operator
labeling problem,

Let us remark that Conjectures 1-3 have been proved?
for all the adjoint tensor operators in U(n) (for all n =
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2,3,---). It has also been shown1? that for U(3) there
exists a canonical splitting of all multiplicities; that is,
the labeling of all Wigner operators in U(3) is unique and
free of arbitrary choices, to within equivalence repre-
senting the choice of 1, 2, 3 explicit in the Weyl canoni-
cal labeling of state vectors within an irrep.

One of the principal aims of the present work is to de-
monstrate by explicit construction that this canonical
splitting in U(3) verifies Conjectures 1-3,

Although a canonical resolution of the multiplicity pro-
blem for U(3) has been shown to exist, the explicit con-
struction of the associated set of Wigner operators and
Racah invariant operators (both of which now are unique
to within phase) is still a formidable task. Complete re-
sults have been given only for the tensor operators
having the irrep labels [210] and [420], i.e., the adjoint}2
{210) (“octet”) and the “27-plet operator” {(420).13

The construction of the multiplicity free operators
{p0---0), even though there is no point of principle in-
volved whatsoever, is itself a sizeable task: This has re-
cently been done by Ali§auskas et al.14 and by Chacédn

et al 15

It is the purpose of the present series of three papers to
illustrate and discuss the structural properties of the
canonical unit tensor operators. There are two aspects
to this program: (1) the elucidation of the structure of
the multiplicity-free tensor operators and (2) the verifi-
cation of Conjectures 1-3 by actual construction of the
unit tensor operators in a multiplicity set.

The first part of this program is by no means trivial,
although much easier than the second. The mere writing
out of complicated matrix elements—even though essen-
tial—is but the first step and of itself contributes very
little to one's understanding of the origins and signifi-
cance of such expressions. There are two indispensable
tools which we have found can render such otherwise
complicated results comprehensible: the factorization
lemmall.3 and the pattern calculus.18 By exploiting
these tools to the fullest extent, one is able to see
through the superficial complexity of the individual
matrix elements and understand quite directly the struc-
ture of the answers—a structure which is often both ele-
gant and elementary.

Let us now summarize the plan of this series of papers.
In the present paper (I), we give in Sec. 2 a résumé of
the basic tools required in the subsequent developments.
In Sec. 3, the totally symmetric tensor operators in U(n)
are considered, the emphasis, as mentioned, being on the
structure of the results, The significant contribution of
this section is an extension of the pattern calculus rules.
This generalization allows one to read off directly from
the arrow patterns the complete matrix element ex-
pressions (except for phase) for all totally symmetric
projective operators (and their conjugates) having either
(1) arbitrary upper operator patterns and extremal
lower patterns or (2) extremal upper operator patterns
and arbitrary lower operator patterns. The totally sym-
metric Racah functions are given in Sec. 3E, and the im-
plications of the limit properties discussed.

We restrict our attention to U(3) in Sec, 4, demonstrating
that the origin of the canonical splitting has the same
geomelrical basis in terms of the arvow patterns as oc-
curs for the totally symmetric operalovs. [Unfortunate-
ly, this feature does not directly generalize to U(n)—
hence, the reason for considering U(3) only.] We con-



CANONICAL TENSOR OPERATORS L

struct in detail the class of U(3) tensor operators having
maximal null space; this class necessarily includes all
multiplicity free operators. The present paper con-
cludes by giving an algorithm whereby all U(3) tensor
operators can be constructed.

While the considerations of U/(3) in this paper are logi-
cally complete (in the sense that all answers are given
fully), we relegate to a second paper (II) the nontrivial
task of verifying that our U/(3) results prove Conjectures
1-3 for U(3). In Paper III, we will resume our general
studies of the structural properties of the canonical
tensor operators in U(n).

2. RESUME OF BASIC RESULTS!”
A. The general coupling laws

The formal algebra of Wigner operators has been deve-
loped in Refs. 1, 3, and 4, and the reader is referred to
these papers for a more detailed explanation of the nota-
tions and proofs of the results summarized in this sec-
tion.

The first basic result is the coupling law for Wigner
operators. This law is given symbolically as follows:

{r} [ - (r”)
[M] (M]) =([M"]), (2.1)
w) \ - (M")

where the dots in the left-hand side indicate that the res-
pective patterns are summed over: (1) The lower Gel’
fand patterns are coupled by Wigner coefficients (indi-
cated by (W)), and (2) the upper operator patterns are
coupled by the Racah invariant operators (indicated by
{R}). In detail, Eq. (2. 1) takes the form as follows:

(r”)
8y \ [M] + [A(A)] =(MZ)
(M")
o)+ aay\| /2 \ | fon
oy M) I
(?14-’;%) ( (M)
S’ / (r) r)
o) 1]+ [a) _
() (r) F) § (M) (M) (2.2)

The summation over (I'’) and (I') is over all operator
patterns such that [A(T")], = [A(D)], + [A(T)],. How-
ever, it is not necessary to specify this explicitly, since
the Racah invariants are, by definition, zero whenever
this condition is violated. A similar, but more restricted
statement3.4 applies to the summation over (M’) and
(M). [We generally adopt the practice of omitting the
subscripts on [M],, (M),_,, etc., whenever they are
clearly implied.|

The second basic coupling law follows from Eq. (2. 2)
upon using the subgroup reduction law for Wigner opera-
tors.1.4 This is the coupling law for U(n): U(n — 1) pro-
jective operators and is expressed symbolically as
follows:

1959
R - (")
(1] [M]) = {[M] + [4] (2.3)
[R] | - ")
The explicit form of this symbolic coupling is
(r”)n-l
G(A,)n_l(A)n_l [M]n + [A(A)]n
(7/,)71—1
= 2 al, + (a@n ) 1\
(Y)n—1(7:)n—1 [ ](” ,,)[ ( )]” [M/]n [( )]"
T),.1(0), .1 n-1 (Y’)n—l Y/ n-
7 AI
Vo, + an) (X \ fan, \(
O\ @ AL O
n-1 (r”)n_l n-1
(rl)n—l (r)n—l
x [M']n [M]n , (2.43.)

(7,)n~1 (7’),,_1

where we have introduced a new object, called a square-
bracket invaviant (in analogy to the curly-bracket, or
Racah, invariant):

(A)n—l
a1, + Ll (o0 for,
(yﬂ)n—l ' ! (7)"‘1
(‘)’ )n—l
(A)n-l
[pm], + [a(A)] M]
> )| o, g
(A,)n_z [Y]n-l + [A(A )]n—l (Al)n—l V]n-l
o\ /W), |
(o) (7 ) (e & (2.40
? (’y")n-z (Y)n-z s
§ 0" -2 /
in which
, _ [yl]n—l
(A )n-l— (A’)n_z (2.4¢)

The first factor on the right-hand side of definition
(2.4b) is a U(n): Un — 1) reduced Wigner coefficient; the
second factor a Uz — 1) Racah invariant-its eigenvalue
depends only on the labels [m],_;. Thus, the square-
bracket invariant, denoted [ -+ ],is a U(n — 1) invariant.
[Note that, for n = 2, projective operators become
Wigner operators, the square-bracket invariant becomes
a Wigner coefficient,and Eq. (2.4) reduces (properly) to
the coupling law for Wigner operators. ]

The coupling law (2. 3) for projective operators will be
used frequently in one form or another in the work to
follow. [Further discussion of Eq. (2. 3) can be found in
Refs. 3 and 4.]
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The following brief notational summary is included to
aid the reader in identifying the symbols used to denote
the basic quantities which enter into the coupling laws
described above:

* ) : unit tensor operator [cf. Eq. (1. 1)];

* | : unit projective operator [cf. Eq. (2. 3)];

: Racah invariant operator
[cf. Eq. (2. 2)};

. : square-bracket invariant operator
[cf. Eq. (2. 4)].

B. The pattern calculus rules

It is a remarkable fact that the explicit matrix elements
of all extremal unit U(n):U(n — 1) projective operators
can be calculated from a few simple rules of the pattern
calculus.1é In particular, this class of explicitly known
projective operators includes all elementary operators
of the form [1,0, _,] and [0,_, —1,] (a dot over a
numeral implies that the numeral is repeated a number
of times equal to the subscript), which themselves are a
basis for constructing all U(n) tensor operators.

The pattern calculus proceeds by considering a given
unit U(n) : U(n — 1) projective operator
(F)n-l
[M]
(7)n~1

(2. 5)

n ’

where both (I'),,_, and (y),_, are extremal patterns. To
this operator we assign a A pattern of two rows, corres-
ponding to the shifts [A(I"], and [A(y)],.;.18 From the A
pattern, we construct an “arrow pattern” and write out
the Un) : U(n — 1) reduced Wigner coefficient by the fol-
lowing rules.

The arrow-pattern rules
Rule 1: Write out two rows of dots, as shown:

s+« pdots

.. « + n—1 dots.

Rule 2: Draw arrows between dots as follows: Select
adotiinrown and adot jin rown —1. If A, (T) >
A]-n_l('y), draw A, (T) — 4;,_4(y) arrows from dot ¢ to
dot j;if A, 4(y) > A, (T), draw the arrows from dot j to
dot . Carry out this procedure for all dots in rows »
and n — 1. This yields a numerator arrow pattern with
arrows going between rows.

Carry out this procedure for dots within row » and dots
within row n — 1, This yields a denominator arvow
pattern with arrows going within rows.
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Rule 3: In the arrow patterns, assign the partial
hook p, todoti, i =1,2,...,n,in row n and Pinato
dotj,)j =12 ...,n—1inrown — 1. (pij =my; +
j—i.

Rule 4: In general, there will be several arrows going
between two dots in the arrow patterns. Assign to the
first arrow the factor

pftail) — p(head) + eftail),
to the second arrow, the factor
pltail) — p(head) + e(tail) + 1,

ete., until all arrows going between the same two dots
have been counted:

e(tail) = 1,

0, if tail of arrow on row n.

if tail of arrow on row n — 1,

Rule 5: Write out the products

N2 = |product of all factors for numerator
arrow pattern|,

D2 = |product of all factors for denominator
arrow pattern|.

The net effect of these rules is to make the associations

(r)

(M)| <— A pattern «
) pattern
Y

The arrow-pattern rules clearly yield the same result if
we effect an integral shift A, (T) = 4,,(T) + 2, i =
L,2,...,m4,, 00> 48, +x,i=12...,n—1,
Thus, the rules apply to A patterns which contain nega-
tive integers. In particular, all operators of the form

[0, — 1, ,] are obtained from the rules above.

arrow algebraic |y

factor D

The value of the matrix element of the extremal pro-
jective operator (2.5) then takes the symbolic form

()
[nZn]n : {‘:Er;;]n [M] g:%" = (phase) {N/D/.
n-1 Yin-1 (7) n-1 (2. 6)

C. Projective functions and A pattern functions
The final labels in the reduced matrix element (2. 6) are
implied by the initial labels. Accordingly, we may inter-
pret a matrix element of a unit projective operator as
defining a unit projective function. Thus, for arbitrary
operator patterns (I') and (I'’), we define a unit projec-
tive function4

(T)

(M} (2.7a)

(r)
by giving its value on the set of all U{n) and Uln — 1)
irrep labels,

(2.7)
(2.7¢)

[m] = [mlann. TMyn ]7

[m,] = [ml,n—1m2,n-1. ) 'mn—l,n—l]’
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which satisfy the Weyl branching law:

(r) " ol + 1A (D) "

o) )= (o o AR
in which

[a] =[a(T), =[a182° -4, ] (2. 7e)

(4] = [A(T)],.1 = [A14%° - A7 4] (2.71)

Furthermore, the value of the projective function is de-
fined to be zero unless {m] + [A] and [m'] + [A’] satisfy
the Weyl branching law (the so-called lexical or “be-
tweenness” conditions).

{We have attempted to introduce a notation in Eq. (2. 7d)
which avoids excessive subscripts » and n — 1. Thus,
the placement of a quantity serves to indicate (uniquely)
whether it should carry n or n —1. In particular, note
that [A’] is defined in terms of the lower operator pat-
tern (I') in exactly the same way that gA] is defined in
terms of the upper operator pattern (I), the only dif-
ference being that A’ is left out of the definition of [A'].
Note, however, the exceptions for the extended projec-
tive opevators,4.16 where both [A’] and [#’] become of
length n.}

In order that the functional interpretation (2. 7) reflect
properly the matrix element multiplication property, it
is necessary to define the product of two unit projective
functions by the following rule: The product

("] [(o
(]| |1M] (2. 8a)
(I-\m)_ (r/)
is the function whose value is given by
(r")] [(@) (r”)
, L0 W I Y RGO R Y
A Rowt) = (20 ) + ()
(r")| L) (r)
(r)
« |y | () (2. 8b)
[’

(r)

It is easily seen that the general rule is: Any unit pro-
jective function standing in a string of such functions
gets evaluated on the labels [m] and [m’'] shiffed by the
sum of all the upper and lower A patterns, respectively,
of the functions standing to the right of it. One verifies
immediately that the multiplication defined by Eq. (2. 8b)
is associative, but, in general, non-commutative.

In an analogous fashion, we define the Hermitian conju-
gale unit projective function

(ry |t
[(M] (2.92)
(T)

by giving its value

1961

OV i\ o =120 | |5 o

X Oeliegen B (0] I B
it I AR SR Vol B ed I 120
()
= |im)
()

[rm] —[4]

(2.9b
[m'] —[&'] )

(The matrix elements can always be, and are, chosen to
be real.)

In the product rule (2. 8), we are allowed, by using Eq.
(2.9), to put a dagger on either or both of the projective
functions. Note, in particular, that

©) O /0 e
| = | (2.10)
@) | <['”']> () <['”]>

Observe that, for (I') and (I'') extremal, the pattern cal-
culus rules apply directly to the Hermitian conjugate
unit projective functions through Eq. (2. 9b),i.e.,p,, =

Pin —8; and py, 1 = p,, 1 — A in rule 4.

Let us next observe that the pattern calculus rules, in
fact, utilize only the two A patterns [A] and [A’] in draw-
ing the arrow patterns, to which, in turn, there is asso-
ciated an algebraic factor depending on {m] and [m'].
These rules associate a perfectly well-defined arrow
pattern with arbitrary sets of integers [Aj45° A, ]
and [AjA%* -+ A _,]. However, the only such sets of in-
terest for the unit projective operators are those for
which [A] and [A’] belong to [M]. (We say that [A]A5- - -

' _1] belongs to [M] if [AjAS...A] ] does.) Clearly,
these two A patterns define both a function

(4]
F{ (3] ],
(4]

(2. 11a)

and an arrow pattern, from which we can read off,
using rules 4 and 5, the value of the function at the
“point” (fl)):

[4]
F| (m] G:z]])
[a’]

We define the product of two such functions in analogy

(2.11b)

to Eq. (2. 8b):
[\ /sl '
) | ) GZ]D = x{ ) ([f;”}j{‘:]])
(a1) \(2 (7]
21\ (i
x F[ [M] ({m,]> . (2.12)
(o]

Again note that the associative law holds, but the commu-
tative law fails, in general.
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The calculus of the functions defined by Egs. (2. 11) and
the product rule (2.12) is well defined independently of
the relation of the two patterns to the operator patterns.
We term such a function (2. 11) a A pattern function,
since the function itself is uniquely represented geome-
trically by the rules of the pattern calculus.

Observe that we have the following identity between unit
projective functions and A pattern functions for both (D)
and (I'") extremal patterns:

(1) (4]

[M]| = (phase) F| [M]

() (a]
for [A] = [A(T)] and [A’] = [A(TV)].

We also define the Hermitian conjugate A pattern func-
tion

(2.13)

(4]
Frl[M] |,

(4]

by giving its value
N A
Pl (M) <[m’]>EF [M] <[m,]_[A,]>. (2. 14b)
[a] [a’]

Again we may place a dagger on either or both of the A
pattern functions in the product (2.12). We note, in par-
ticular, that

Y
Frl [M]

(2]

has the value

(4] z
[m]
F| [M] , .
) \']
[a]
The Gel'fand pattern notation is unwieldy and overly re-
dundant for the elementary operators (10) and (10).

Accordingly, we introduce a special, more compact nota-
tion for these. In this paper, three such notations occur:

e

where 7= 1,2,...,n in each pattern. (We omit the sub-
scripts on 0 or 1 when it is clear how many times the
numeral is repeated.) The integers 7, 7, and 7 specify,
respectively, the operator patterns which have A patterns
given by A(7) = [0--+010---0] (1 in position 7), A(F) =
[1---101---1], (0 in position 7), and A(7) = — A(7). Thus,
for example,

(2. 14a)

(4]

Fl [M] (2. 15a)

(2. 15b)

(2.16)

oo,
p

Lp=L12,...,n (2.17)
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designates the fundamental U(r): U(n — 1) projective
operator (or the unit projective function) having upper
operator pattern with A pattern A(7) and lower operator
pattern with A pattern A(p).

We also extend this abbreviated notation to the following
patterns:

({p 0] (5 0]\ {10 —p]
T , F , T , (2.18)

where 7=1,2,...,n. The integers 7, 7, and T now speci-
fy, respectively, the operator patterns which have A
patterns given by pA(7), pA(7T), and —pA(T). Observe that,
in each instance, the A pattern is a permutation of the
irrep labels, i.e., the pattern is extremal. This implies,
for example, that

TT T |
[p OI] = |1 9]
L P P

(2.19)

Particular examples of this notation combined with Eq.
(2.13) are

[ ] a(7)
ool =ste-7rft 0, (2. 20a)
L P A'(p)
o7 — A()
[0 —1]} =(=1FS(p —1F{ [0 -1]},
L P — A'(p)

(2. 20b)
[ 7] A7)
i o)l =(—vess(p—nF([1 0]}, (2.200)
[ A 2" (p)
o] pA(T)
(p 01| =[S(p — DPF|[p 0]}, (2. 204)
N pA(p)

where S(p — 7) is defined to be + 1 for p > 7 and — 1 for
p < 71. &’(p) is simply A(p) with the nth component
missing, e.g., A’(n) = [0+ 0]. The values of the A pat-
tern functions F(:) are, of course, known explicitly from
the pattern calculus rules.

A new development of the pattern calculus rules is ob-
tained in Sec. 3. In anticipation of these results, we now
note some additional features of the A pattern functions.
The pattern calculus factor |N/D| is actually of the
more explicit form

I(J\rn;n-l X Nn-l:n)/(Dn x Dn-l)"

where

(2.21)

Nﬁ,n_l = |product of all factors for arrows going
' from row n to row n — 1|,

| product of all factors for arrows going
from rown — 1 to row n|,

|product of all factors for arrows going
within row =/,

D2, = |product of all factors for arrows going

within row n — 1].

It

N2

n-l:n

D2 =
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Thus, a A pattern calculus function is, in fact, the pro-
duct of four functions, each of which has a well-defined
meaning. We introduce now two combinations of these
factors (the importance of these particular combinations
will subsequently be shown).

Let

(2. 22a)

denote the restricted A pattern function having the value

]
[m]
FR. [M] ’ ’
]\ ]
f4']
obtained by deleting the denominator factor D from ex-
pression (2. 21),1.e., the value obtained from the pattern

calculus rules by leaving out all arvows within vow n.
Similarly, let

(a]
Fpl [M]
[a7]

>

(2. 22b)

(2. 23a)

denote the restricted A pattern function having the value

(4]
Fof (1] G’”]D ,
N

obtained by deleting the denominator factor D, ; from ex-
pression (2, 21), i. e., the value obtained from the pattern
calculus vules by leaving out all arrows with rown — 1.

(2. 23b)

A A pattern function is now expressed in terms of a res-
tricted pattern function by

(4]
(4] (M]
d[M] = Fp| [M] d[ ],
AI
[a]

(2.24)
where the value of each of the quotient functions is de-
fined to be the value of the restricted A pattern function
divided by d (%ﬁ} Y[m]) and d(?ﬁ])([m’]), respectively.
Here d(%ﬁ%) denotes the U(n) denominator function defined

by the arrow pattern for row n, and d(bﬁ} ){[m]) denotes its

Al Al
M] )= Fg (M]
(a7] [a']

value D,. Similarly, d(ﬁi,}]) denotes the U(z — 1) denomi-

nator function defined by the arrow pattern for row

n —1,and d(%})})([m’]) denotes its value D,_,. [Observe

that D, _, is nof just the value of D, withn—>n—1,
since the rules for determining the U(n — 1) denominator
have an extra shift + 1 associated with them.]

The multiplication rule (2. 12) now implies the multipli-
cation rule for the quotient functions:

"N (1IN [ o7 fia)
Fpl (M'] |Fal [M] d<[M'>d<[M]>

[amy) \ja]

1963

S8
(M)
(2. 252)

where the value of the numerator product is defined by
the rule (2.12), and the value of the denominator product
is defined by

(a”]\ ([a] _(la7]
d([M']>d<[M]> () = d<[M,]> (] + (2]
[4]
d ml).
(e

The second quotient function in Eq. (2. 24) obeys these
same rules.

(2. 25b)

The Hermitian conjugate A pattern functions have a simi-
lar decomposition into a restricted A pattern function
part and a denominator part—simply place a dagger on
F,Fg,Fg,and d in Eq. (2. 24). The appropriate defini-
tions are

al al\ s,
Fif [M] (m]]> = Fof (M] GZ}_% ]]> . (2. 26a)
[a’] [a’)

NS\ N\
d <[M]> qu_d([M]) (Im] —[a)). (2. 26h)

Similar definitions are made for the second decomposi-
tion.

Observe then that property (2. 15) holds for the restric-
ted A pattern functions. In addition, we have a similar
property for the denominator functions

(L8] ([a] ) = (8] - 2
d <[M]>d<w]> ([m2]) d<[M]> (mDh] . (2.27)

It should ke noted very carefully that in all cases of the
various types of A pattern functions introduced, it is the
Hermitian square f*f which has for its value [f(x)]2. It

is convenient to introduce the following notation for the

product f1f:

If12=1f. (2.28)
In particular,
d (2] ’ =dgr [A] d [a] . (2. 29)
[M] [M]) \[M]

We may place a dagger on either or both of the d's in
Eq. (2. 25b). For example,
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(a”] (a]
[" ([M'J) (mﬂ )
[a”] (4]
QMDQJ[]GM%M—MV (2.30

If fand g are A pattern functions, we also define (fg)*
by the rule

(for =g'rt.

An important special case of these notations and defini-
tions is as follows: Let

(2.31)

i =af A0 (2. 32)
alr) < [1 (')] . .
Then
ldA(‘r') dA('r)lz = (dA(T') dA(f))*dA(r’) NG
= dZ(T) dZ(T') dA(T’) dA(T) y (2. 333.)

and the value of the function at the point [»] is given by

ldyry dagry| 2(m]) = ldy(ry) 2(fm] + A())
X |dpcry 2({m])

={d,y([m] +A@)dy (o (M)} 2. (2. 33b)

D. The factorization lemma

The use of boson variables as a convenient realization
for the carrier space of U(n) is very familiar.19 In or-
der to realize all irreps of U(n), it is necessary to
assume z kinematically independent copies of an n-state
boson variable; that is, one takes the variables al
i,j=1,2,...,n,with the commutators

[&;ﬁ, a]ij] = 62'6;'.’, (2.34)
all other commutators defined to be zero. The genera-
tors E; of the group U(n) are defined by the mapping

n
E;-é&;= 2, akat (2. 35)
k=1

It is clear, however, that these boson variables admit
also of a second, isomorphic U(z) group generated by
the operator mapping

n
E a,aj,
and that, moreover, the two sets of operators {E } and

{EY} commute. Thus this boson realization involves
the direct product group U(n) X U(n).

EY 5 g9 = (2.36)

In fact, one sees at once that this boson realization {a'}
really involves the group U(n2) and all totally symmetr1c
irreps thereof. This defines a canonical imbedding of
U(n) in the sequence of groups Um2) D Uln) X Uln) O Un),
in which, moreover, the irrep labels of the two U(n)
groups in U(n) X U(n) coincide {we denote this by Un)
U(n)]. This structure is precisely the analog to that exhi-
bited by the tensor operators of U(n), and Ref. 11 discus-
ses this canonical imbedding in detail, proving the fac-
torization lemma to which we now turn.

Let
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(M)
(M]
(M)

(2.37)

denote a normalized basis vector in an irrep space of
U(n) * Uln). In this notation, the first U(n) refers to the
U(n) group with generators E,;,the second to the U(n)
group with generators E#/, These two U(n) groups are
isomorphic but distinct (and commuting); the placement
of the indices is merely a reminder as to which group is
which (“upper” vs “lower” )}—there is no other implica-
tion.

The star signifies that the Casimir invariants of the ir-
reps of these two groups coincide. Hence, both

[M]> (M)
M) = d M) =

o= () = 0 (o)
in Eq. (2. 37) are Gel'fand patterns, the second one being

inverted. The basis vector (2. 37) may also be written in
the form

(2.38)

(M) (M)
[M] =9JE([M])‘1/ZB [M] |(4)]0, (2.39)
(M) (M)
where
(M)
Bl [M] )(4) (2.40)
(M)

is an operator-valued polynomial in the set of boson
creation operators A = {a]i}, the symbol |0) denotes the
vacuum ket, and M ({[M]) is the measure of the highest
weight tableau associated with [M]:

1 (M, +n— )

i

m([M]) (2.41)

H (M;, +j—i).

i<j=1

The introduction of M-1/2 into Eq. (2. 39) defines the
manner in which the boson operators (2.40) are norma-
lized: For example, if (M’) and (M) are maximal, i.e.,

My =M, M;=M,, ali}j, (2.42)
then
(max)
B [M] )(4) = [1 (a5 3) " Mren, (2.43)
(max)
where a}...} is the determinant formed from the k

bosons ai,,j < k.

The boson operator (2.40) is clearly a tensor operator
in either its lower or upper Gel'fand pattern with res-
pect to transformations in the respective U(n) subgroup
of U(n) * U(n). As such, it must be bilinear in the cano-
nical Wigner operators which are defined, respectively,
on the two U(n) groups. The factorization lemma asserts
that the precise form of this bilinear relation is
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(M) o\ /o)
B| [M] |(A) =m1/2 ¥ [[M] ([M]\ Mm-1/2, (2.44)
)
(M) (), \(M,

where M is an invariant operator of U(n) * U(n) which
has eigenvalue equal to the measure M ([m]) for an arbi-
trary vector with labels [m]. The indices £ and « desig-
nate the fact that the Wigner operators act, respectively,
on the lower and upper Gel'fand patterns of an arbitrary
vector of U(n) * Un):

(Y \_ (i)

™y

Note that when we apply the individual Wigner operators
in Eq. (2. 44) to an arbitrary basis vector (2, 45), we
should consider the common labels [#] to be two identi-
cal sets of labels as indicated. Note also that the two
Wigner operators in Eq.(2.44) commute since they act
in different spaces and that the application of a single
Wigner operator carries a vector oufside the irrep
space of U(r) * U(n) in the general case. [More pre-
cisely, these properties serve to define the meaning of
the product of operators in Eq. (2. 44).]

(2. 45)

The work in Sec. 3 makes use of the following important
special case of Eq. (2. 44):

. /T / T
al = w2 3 <[1 o) i b]> w12, (2.46)
RPN

(This special case accounts for the term “boson factori-
zation.”)

The boson polynomials (2. 40) are of considerable in-
terest from still another point of view: Under the map-
ping @} —u,;, where u,; is the element in row i and
column j of an n X n unitary matrix U, these polynomials
become

(M)
B| [M]
(M)

. (2.47)

These functions are precisely the matrix elements of
the unitary matvix irrep [M] of Un).3.20

The structural significance of Eq. (2. 44) is clear: The
matrix elements of the boson operator (2.44) yields, in
the boson language, a result which is completely analo-
gous [in U(n)] to Wigner's SU(2) result2! which expres-
ses the integral of three representation functions in
terms of two SU(2) Wigner coefficients.

3. THE TOTALLY SYMMETRIC TENSOR OPERATORS
IN U(n) AND THEIR CONJUGATES

A. Application of the pattern calculus

Consider the coupling law (2. 4) expressed in the inver-
ted form

1965
()| ()
[(M']] | [M]
&) ] L
(A)
_ [M] + [a(A)] [ [M]
T (@G (r") ] (1)
(")
(7 + s\ (O
x e ( )
") , )
L (')
(@)
X [M] + [a(A)]
") @.1)

Particularizing to the totally symmetric projective
operators of the same extremal lower patterns—say,
those designated by p in the notation (2. 17) and (2. 18)—
we obtain the following explicit form:

(r") T
[p—1 0] |[1 0]
p p
0 ! 1 0] (n)
=t ol p—1 0] [ b 01|, 3.2
() T
(r’) p

where (I') is uniquely determined from its A pattern:
[A(D)] = [A(T)] + [A(7)]. [The square-bracket invariant
in Eq. (3. 1) does not appear in Eqg. (3. 2) because it has
value 1 on the relevant extremal patterns.] We next
iterate Eq. (3. 2), multiplying at each iteration by the
appropriate Racah invariant to deduce

TP Tp—l Ty T1
1 ofin 0] [t 0} {{1T 0]
p p p p
(T)
= ng- Y [p 0] , (8.3)
p
where 7,-+* 757, is any set of integers (1 < 7, < n) such

that it contains A; 1's, A, 2's,..., A n's, where A, +
Ay + e+ + A =pand A; = A, (T). Then

I

2 Alr;) = [4]. (3.4)
=

9’1)
riants (p in number); but we will utilize for the present

only the fact that it is a U(n) invariant,i.e., ‘qu--‘fz 4 is a

ety is explicitly given by a string of Racah inva-

function whose values depend only on the irrep labels
[#2] of an arbitrary state vector.

We next replace each projective function in the left-hand
side of Eq. (3. 3) by the form (2. 20a), where, in addition,
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we split each fundamental A pattern function into the
first of the quotient forms (2. 24). The left-hand side of
Eq. (3. 3) becomes

A(Tp) A(Ty)
(phase) Fp{[1 01]--- Fell2 0]
a’(p) A'(p)
A(Tl)
X Fpll1 01) / dacyy * " dacry dacry s (3.52)
A'(p)
where we have written
d d Al (3. 5b)
S 5 S ) '

We now point out the following fundamental fact: The
restvicted A paltevn functions appearing in the numera-
lov of Eq.(3.5a) multiply by addition of their pattevns;
the undevlying ovigin of this property is geometvical—
the arvow patterns of this string of p functions contain
no opposing avvows. Thus, the numerator of Eq. (3. 5a)
is simply

4]

(phase) Fy, [[p 0],
p

(3.6)

independently of the particular 7, which satisfy Eq. (3. 4),
The denominator functions appearing in Eq. (3. 5a) and
the invariant factor appearing in Eq. (3. 3) can contribute
at most a function whose values depend on the U(n) irrep
labels [m]; the following form must hold:

(1) (4]

. . A
P pa'(p) /7
(3.7

where D([p[AJO]) denotes a new U(n) denominator func-
tion with properties yel to be determined. We know it to
be a function which takes its values only on [m]. The form
of Eq.(3.7) is uniquely implied by the coupling law (3. 2)
and lhe geometrical properties of lhe arrow patterns.
[Note that there is a relation implied by Eq. (3. 3) be-

tween the denominator function D([P[A]b]) , the string of

fundamental denominators in Eq. (3. 5a), and the invariant
9, T ; but this relation will not be required, since we

plan to give a more direct derivation of the function

D([p[A]bJ)']

Let us remark that the value of the A pattern function
appearing in Eq. (3.7) is given explicitly by the pattern
calculus rules. Only the phase and the denominator are
undetermined. Observe, furthermore, that for (I') - 7
[the extremal pattern in the notation (2. 18)], then

’
To Ty

D atn) .\ =d

3.8
p o) = Ui 4.9

i.e., the value of the denominator function, in this special
case, is obtained from the usual U(n) denominator pat-
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tern calculus rules. Our aim is to demonstrate a more

general Un) denominator pattevn calculus vule which
yields the value of the denominator function D([p[Mbl)

’

this rule reducing, of course, to the usual rule in the par-
ticular case (3. 8).

Starting from

T T
[p—1 0] |[1 0

(r”) P

T\ WA O\
= , p—1 0 [p 0]f (3.9)

() o
(r”) (r")

in which [A(T")], = [A(T'")], + [A(p)], and following the

same iterative procedure which led to Eq. (3. 3), we also
deduce the form

T T T
[t 0] (1 0 [1 0]
Pp P2 Py
T
=latlp —@V/pt]H28, e [0 0], (3.10)
(r")
b
% ale,) = (&), = [8385 -+ &), (3. 100)
e
where 5' e pghy is a string of p U(r — 1) Racah invariants,

andwhereq—r” a1 = A7+ A+ -+ A 4. The
values of this strmg of Racah functions depend only on
the U(n — 1) irrep labels [#'] of an arbitrary state vec-
tor. {The binomial coefficient (inverted) comes from
expressing the string of p square-bracket invariants in
terms of the U(n) : Un — 1) reduced matrix elements of
the relevant projective operators [see Eq. (2.4)] and
U(n — 1) Racah invariants.} Using the same argu-
ment which led to Eq. (3. 7), we obtain the following re-
sult:

T pA(T) .
R . / [p 0]
[» 0]] = (phase) Fgr | [p 0]11/D a7]
() (a1 /4
(3.11)
where [A'] = [A'],_4, and D(“’[A,] ) is a U(n — 1) deno-
minator function with properties yet to be determined.

It is a function which takes its values only on the
U(r — 1) irrep labels [m'].

o

Once again the origin of the restricted A pattevn func-
tion in Eq.(3.11) is the geomelvical property expressed
by the stalement that there ave no opposing arvows in
the string of p fundamental rvestvicled A patltevn functions
occurving in the left-hand side of Eq.(3.10a)—/hese fac-
tors accovdingly multiply bv addition of theiv A patterns.
The value of this restricted pattern function is, of
course, given by the pattern calculus rules.

One suspects (correctly) that forms having a structure
identical to that of Egs. (3.7) and (3. 11) should hold also
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for the U(n) conjugates (0 —p) and the SU(n) conjugates
{p 0). However, such results can be cbtained from the
following more general result relating the Hermitian
conjugate to the U(n) conjugate, for totally symmetric
Wigner operators:

m \*
b 0]) =(=1e@-e00 x p-1/2 ([6
(»1)

(T
—p Dl/2,

(M)
(3.12a)

This relation is an immediate consequence of Eq. (4. 7)
of Ref.4. D denotes the dimension operator. Specifi-

cally,
pjn/1!2! e n— 1)1

D(m)) =

¢(T) and ¢(M) are, respectively, the sums of all the
entries in the operator pattern (I") and the Gel'fand
pattern (M):

i (Pin — (3. 12b)

l<-

¢(T) = érli’ (3.12¢)
o(M) = fi:‘,lMl,.. (3.12d)

(T) denotes the unique operator pattern determined by

(4], = —[A(D)],,

and (M) has a similar definition, i.e., (M) denotes the
Gel'fand pattern having the negative weight of the pat-
tern (M). [A more general definition of (I') and (i) will
be found in Ref. 3.]

Using the U(r): U(n — 1) subgroup reduction law, Eq.
(3. 12a) is easily transcribed into the following relation
between projective operators:

(3.12¢)

= (— 1)8@-2)

(n [

x <D">1/2 0 <:D" )Mz, (3.13)
:Dn-l :Dn—l
()

where the subscripts » and » — 1 on D refer, respectively,
to the dimension operators in U{r) and U{n — 1). Noting
that

(D)
—'p] 3

(F) (W)
(b 0| = |(]] |
@ (1) 7)

(3.14)

we also obtain the relation between the [p 0] prolectwe
operators and the totally symmetric ones, % (T) de-
notes the pattern determined (uniquely) by [a(D)], =

], + [A(E)

We now turn to the following section for the determina-
tion of the denominator functions appearing in Egs. (3. 7)
and (3. 11),

1967

B. Application of the factorization lemma

There are several ways of determining the denominator
functions appearing in Eqgs. (3.7) and (3. 11). The factori-
zation lemma provides an extremely useful technique
for illuminating the simple structures underlying other-
wise very complicated expressions, In view of the fact
that one of the principal aims of the present paper is to
explain, by actual examples, structural approaches to
group theoretic problems, we shall accordingly empha-
size, more than is customary, the purely technical and
manipulative aspects of our work. The present section,
developing properties of the denominator functions, pro-
vides an instructive example.

It is first of all clear that the denominator function in
Eq. (3.7) cannot depend on p. Consider then the follow-
ing totally symmetric boson polynomial in the irrep
space of Un) * Uln):

1

B([p 0]
1

(4) = (a})?, (3.15)

where the 1 designates the maximal pattern in the nota-
tion (2, 18). We now apply the factorization lemma (2. 44)
directly to this operator and obtain

1 () / (1)
Bl{lp 0]} (A)=m12% ([p (o o] m-2
1 © 1 4 \ 1 /S u

(3.16)
But also, from Eq. (2. 46), we have

" T T p
2 o) ([1 0

7=1
1/, 1

(a})p = m1/2 w-1z(3,17)

and, therefore,

(1) (r) . T T \ »

b o) (p 0) =(X(;x 0) ([0 o) }.
r) 7=l

1, 1 1/, \ 1/

(3.18)

Relation (3. 18) is an operator identity on the space of
state vectors of U(n) * U(n), and we are at liberty to let
Eq. (3.18) act on any selected U{n) * U(n) state. We
choose states which are maximal in the U{nz — 2) %

U(n — 2) subgroup labels and which carry the same

U(n — 1) labels [m']:

u

(max)
(3.19)

(max)

This class of state vectors is precisely the space in
which the projective operators act [see Eg. (2. 25) of

Ref. 4]. Furthermore, the relevant U(r — 1) Wigner oper-
ators in the subgroup reduction of Eq. (3. 18) act like the
identity on the subspace of states of the form (3. 19).
(Their matrix elements have numerical value 1.) Thus,
Eq. (3. 18) implies the following relation between unit
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projective operators:

(1) (1)

o) 1 c 1 1.
. ( T T ?
=z | ol |1t 9 (3. 20)
T=1 i 1 . 1 )

i.e., this is an operator identity on the U(n) * U(n) states
of the type (3.19). [Indeed, we could even choose the
upper U(n — 1) labels and lower U(z — 1) labels to be
distinet. ]

We now take matrix elements of Eq. (3. 20) between the
initial state (3.19) and a final state of the same form but
with U(n) * U(n) irrep labels [m] + {a]—where [A] is any
[A] belonging to [p 0]—and with U(n — 1) * U(n — 1) irrep
labels {m’'] + pA’(1). This selects a single term from the
left-hand side and gives the square of a reduced matrix
element—the term appearing in the left-hand side of Eq.
(3. 22a) below.

Next consider this same matrix element for the right-
hand side. We introduce p summation patterns 7, 757,
and write the pth power in Eq. (3. 20) as a string of p
operators (the same operator written p times), denoted
symbolically as follows:

201000 E0.0)E [
1 Omany e

The application of the first pair [][[] . (the pair on the

= 4

Tyt tTp Ty

far right) to the state (3. 19) gives a new state of the type
(3.19) with {m] = [m] + A(7q), [w'] = [m'] + A’(1), multi-
plied by the square of a fundamental reduced matrix ele-
ment, - « -, the application of the last pair [] []u to the

state generated by all the pairs to the right gives a final
state of the type (3.19) with [m] — [m] + 232, A(T)),

[m'] = [m’] + pa’(1), multiplied by the square of a funda-
mental reduced matrix element. The result may be ex-

pressed as follows:

2
CRC I
CARPINCIN R 180
_ CORSTS N L I P
B fp.%n [(m’] + pa’(1) [t . ) b . ‘]
’Tl 2
10 [m]\ (3. 22)

[M']/ ’

where the summation is over all 7, 7,7 1ls7,<n)

i
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such that

?

3y alr,) =[a]. (3.23)
i=1

Observe that—although we have used a specific realiza-
tion (the boson basis) in obtaining Eq. (3. 22)—this result
is an abstract general velation. Indeed, it is precisely
the abstract operator slatement:

m |7 @
0} |[»p 0
1 1
Ty Tg Ty *
= X (1 o ---flr O)f |[x 0
TP Tz‘rl 1 1 1
Tp To Ty
x{{r of--- |[r 0] [t 9 (3.24)
1 1 1

We could have derived this result, Eq. (3. 24), by purely
abstract (algebraic) techniques; but this would have re-
quired detailed use of the properties of the Racah in-
variants. The power of the factorization lemma for
directly obtaining abstract and general results is clear.
[A similar technique has previously been used* to deter-
mine the abstract structure of the generators of Ux) in
terms of the fundamental Wigner operators and their
conjugates. |

Equation (3. 20), hence, Eq. (3. 24), is also correct for an
arbitrary lower extremal pattern p, and again the proof
can be given from the factorization lemma, starting
with (af)#, but now paying more attention to the U(n — 1)
Wigner operators which occur. Note, however, that for
p = n the result is immediate.

Next, let us interpret Eq. (3. 24) in terms of the projec~
tive functions and the restricted A pattern functions in-
troduced in Sec. 2C. The result is

Sy Y (4] 2
3 0 <[m]> = 3FR b0 <[m] )2
: 1 .

A'(1)
> ! (3. 25)
T2y IdA(TP)..'dA(Tz)dA(Tl)lz([m]), ‘
that is,
o 2l (]
[p 0]} = (phase) Fp|[p f)] [ 0] ,
1 A'(1) b
(3. 26a)
where
1 1
= E )
of 1AL \? wemn lda " dacy dacrp!?
fp 0]

(3. 26b)

where the summation is over all 7,--- Ty74 (ls7,<n)
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satisfying Eq. (3. 23). The complete vesult, including the

determination of the new denominator function,is thus

proved dirvectly from the factorization lemma and the

geomelrical properties of the arrow patterns.

Let us remark that Eq. (3. 26b) completely determines the
2 . :

denominator function ’D <[ p[A]a] , since the right-hand

denominator functions are fundamental, and their values
are already given by the pattern calculus rules.

We can given an elegant interpretation to Eq. (3. 26b) by
considering the irrep labels [m] = [m,,my "+ *m,, ] as
specifying a lattice point in n-dimensional Euclidean
space R#. We then consider A(1) = [0++-010---0] (1 in
position 1) as an elementary shift acting along axis 7.
Since T may be 1,2,..., or n, we can make elementary
shifts along any of the n perpendicular directions. The
label [#] defines a lattice point in R* as does [m] + [A].
A selected set 7,,..., Ty, T, (such that 25, A(7) = [A]) of
integers then defines a path beginning at [m] and ending
at [m] + [Aa]. Our result, Eq. (3. 26b), then takes the very
suggestive form

D( a1, )
b 0]

1

2
path
(m ) = s
) ali pa1§s from \contribution

fm] to [m)+ (4] (3.27a)
where a “path contribution” is defined to be
( i > = 1/ldy(ry" " " dacry) Gacrpl 20m)),
contribution » 2 ! (3. 27b)

with the value of the denominator functions d A being
given by using Eq. (2. 33b).

The expressions (3.27) are clearly suggestive of Feyn-
man's approach to quantum mechanics and indicates that
the pattern calculus has ultimately some kind of inter-
pretation as a lattice quantum mechanics. The evident
vagueness of this remark is balanced by its equally evi-
dent interest.

We defer further discussion of Eq. (3. 26b) to the next
subsection, and consider now the second denominator
function of Eq, (3.11). It is related to the first denomi-
nator function of Eq. (3. 26) for n = n — 1. To establish
this relation, we first observe that Eq. (3. 24) implies
the following property of the U(n) invariant operator of
Eq.(3.3):

E g.s-p‘..rzrl‘g ceeT

, =1, (3.28)

Tp- Ty Ty 4
where the sum is over 2all 7, satisfying Eq. (3.4). Next,
consider the U(z — 1) invariant operator in Eq. (3. 10a).
We claim that the property (3. 28) implies also

Z 9'1‘ g’
Pp.ePoby Yy
pp...pzpl b 1 4

(3. 29)

Pohy = 1;

where the sum is over all p,* - pyp; (1 < p; < n) such
that Eq. (3. 10b) holds. We argue as follows: Eq. (3. 28)

is a statement about a string of p U(z) Racah invariants—
Eq.(3.29) is precisely this same property applied to a
string of q Uln — 1) Racah invarianls. At first glance
this conclusion appears to be incorrect because the p;

in the summation (3. 29) can assume the value n. How-
ever, closer examination will show that for each p,

which assumes the value n, the corresponding U{n — 1)

1969

operator pattern in the U{z — 1) Racah invariant be-
comes

)

and the Racah invariant (for the patterns which actually
occur) becomes the identity operator 1. Since each
sequence p, ‘- *pyp; contains Ajl's, Ah 2's, ..., A n's,
it follows that each string of p U(n — 1) Racah invariants

in 5;,0..,p2p1 reduces, in fact, to a string of A} + A5 + -

+ A, _; = ¢ Uln — 1) Racah invariants. The summation
in Eq. (3. 29) assumes the form

gt g , 3.30

Pqu'ZP;zPl gt Pafy " PqrtPaby ( )
where the summation is now over all integers Py P2P1
(1 < p; s n— 1) such that

q
2y A(py) = [87],q = [8185 - 80 4]
i=

Furthermore, the form (3. 30) becomes precisely the
form of the left-hand side of Eq. (3. 28) forp — ¢ and

n —» n — 1. Since property (3. 28) is true for alln = 2, 3,
e+« andallp = 1,2 --- the proof of Eq.(3. 29) follows.

Using property (3. 29), we obtain the following result
from Eq. (3. 10a):

T T T
b 0 lib 0
() (r")
f T T T \
= ool o o
q PproPafy
[ P2 L. Py
T T T 7
x{fropf e qfr B 0] ) (s.31a)
Py P2 py -

in which the sum is over all p,*--pzpq (1 < p; < n) such
that

b
QA(pi) ={a'],. (3. 310)
Equation (3. 31a) now implies
7 pa(7)
(p 0]| = (phase) Fy.([p 0]) /o [p[A, 0] ,
(r (2] ]
(3. 32a)

in which now [A’] = [A’], ;. The new denominator func-
tion is defined by

1
,D(u ﬂ)
(a7}
1

“()
q/ pprpah l"ilA’(pp)' ) 'dIA'(pz) N pl)lz

2

, (3.32b)

where
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d’, =d (1 b] (3.32¢)
Al(pi) = A’(pi) ) . C
A'(p;})=[0-+-010--+0},_;, 1in positionp,, (3.32d)
a'(n) = [0-+-0] _4, (3.32e)

and where the summation is still over all p, -« pyp;
(1 < p, < n), such that EleA(p,.) =[a'], . However,

noting from Eq. (2. 24) (for [M] = [1 0)) that d/,,,, = 1,
we see that Eq. (3. 32b) reduces to

1

IDCP N 01)

2

p 1
(;), 2 = .
q pq...ngl Idﬁl(pq)...dA;(pz)dAt(pl)f

(3. 33a)

in which now the summation is over all p o " TP2Py
(1 < p, <n —1) such that

q
?JIA'(p,») =[a"],.,. (3. 33b)
=
Recall also that
g=T7 .1 =481+ Ay + 4] 4. {3.33¢)

This new denominator function also has a sum-over-
paths interpretation, where now each path carries equal
weight given by the binomial coefficient (f:).

Despite the similarity of the sums in Egs. (3. 26b) and

(3. 33a), they do nof represent examples of the same
general sum, the reason being that the pattern calculus
rules for forming fundamental U(x) denominators differ
from those for forming fundamental U{n — 1) denomi-
nators, It thus appears that we are confronted with the
task of performing two difficult summations, and not just
one. This, however, is not the case: It will now be de~
monstrated how the second sum (3. 33a) can be converted
into one of the form identical to that of Eq. (3. 26b).

Consider the denominator arrow pattern for the funda-
mental A pattern A(7).. This defines the function d,(,,.

Its value is given by applying the pattern calculus rules
for row n:
) 1/2,

daenm) = (
Suppose, however, we apply the yule appropriate to a
U(n — 1) denominator, i.e., we evaluate the same function
d(ry on the m;, , but now use the extra + 1in each fac-
tor appropriate to the rules for a U(n — 1) denominator.
This defines a new function evaluated at [m]:

T, =0 (3. 34a)

i®T

X
Ay m]) = (‘if}l(m —bin ¥t 1)’) 12, (3.34b)
The relation between these functions is simply
an = D2y, D, (3. 35a)

where D, is the U(n) dimension function. The meaning to
be associated with this multiplication of an ordinary
scalar function with a A pattern function is*4
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B3y () = DI2(m] + AN 5, ()D /2 (o).
(3. 35b)

[Equation (3. 35a) may be viewed as a statement as to
how to convert, operationally, the U{n) denominator rule
into the U(n — 1) denominator rule.]

Replacing n» by n — 1 in Eq. (3. 35a), we obtain

dir oy = DLz dA'(p):D;;-ll/z’ (3.36)

where A'(p) = [A(p)],_3,d}. y([m']) is the value of the
U{rn — 1) denominator function obtained by the usual (+1)
paltern calculus vules,and d,. )([m’]) ig the value
assigned to a U(n — 1) denominator function by using the
factors (no + 1 is added) appropriate to the pattern cal-
culus rules for U(n) denominators.

We now use relation (3. 36) in the right-hand side of Eq.
(3.33a) to obtain

ldg,(pq)---d;ﬁ.(pl)lz = I:D;_/gdA.(pq)- *rd g Di 212

= (dA.(pq)' . dﬁ,(pl))*ﬂbn,l(dA.(pq)- . dA’(pl))ﬂ)n-}l' (3.37)

Thus, we can write

b 01, _ [p\'72 (8, -
1/D< {A'],,_1>”<q> / :D"l“/*w([q ém) Dt

(3. 38a)
where

1 _ 1
'D( [80-1 ) 2
{q ()}rhl
The last denominator is now of precisely the same form

as the one of Eq. (3. 26b).

With this simplification in hand, we now turn, in the
following section, to the problem of evaluating explicitly
the complicated appearing sum of Eq. (3. 26b).

pa " papy 1daegopt dargppl ®
(3.38Db)

C. The generalized denominator function pattern calculus

The defining equation for the denominator function under
discussion, Eq. (3. 26b), is useful conceptually but needs
to be implemented in practice. We have succeeded in
obtaining a remarkably concise and explicit form for
these functions which represents a further development
in the pattern calculus. This result is a generalization
of the answer for U(2) given earlier® (without proof).

Since the U{2) result is much more easily understood,
we shall discuss it in detail. Consider at first the
special U(2) denominator function

1 _ 1 + 1 —. (3.39)
’D<1 1) 2 ldiy gydio 11‘2 ‘dto 1411 01‘
20

The value of |d;; o140 1912 is {dpy o910 17197 92)}2
= {dzl 01 yg, My + 1}z x {d(o 1](m12m22)}2 =

(pyg — Pag — 1)(Pyg — Pyp). Similarly, the value of the
second denominator is (p,, —Pay + WPy —Pyy)-
Thus,

/11 2
}’D( ) (m12m22)} =3(p1a—DPap— V(D1z— Dy +1).
20 v : (3. 40)
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We now seek to understand the structure of the result
(3.40). First, we decompose the A pattern [1 1] into the
form [1 1] = [1 0] + [0 1]. We next draw the arrow-
patterns for [1 0] and [0 1]:

~— T s

Over each of these arrow patterns, we write the shift
of the other arrow pattern:

0 1 1 0
° (] P9 o

- -

Next, we associate with each of these arrow patterns an
algebraic factor

[p(tail) + 6,] — [p(head) + 5,], (3.41)
where 6, designates the numeral sitting over the tail of
the arrow and 6, designates the numeral sitting over the
head of the arrow. This yields the two algebraic factors
Pig —Pgg —landp,, —py, — 1, the absolute value of
which is just the denominator (3. 40), except for the fac-
tor 2, which is associated with the number of paths.

Encouraged by this simple structural interpretation of
D(3} ), we try to generalize to D% 32), having the A
pattern [A; A,], where A; + A, =p: Following the same
procedure, we are led to the patterns

0 By 8y 0
[ o [ 4 [
S~ Fe—
Ay arrvows Ay avrYows

Using rule (3. 41) for the first arrow in each pattern,
adding 1 for the second arrow, etc., we write out the two
algebraic factors associated with the two patterns above:
(Pog —P1a— B )Dgy —P1p — Ay +1):--

(Pag — P12 — By t By —1)and (py, —Ppy — B8,) X

(P1p —Pgp — By T 1) - (p1y—Pypy— Ay + 8y — 1),
Since the number of distinct paths in the sum (3. 26b)
(forn = 2) is p!/(8,)!(A,)!, we are led to conjecture
the following general form:

- [A; A, 2 A Al
{D<p 0 ) (m12m22)} - lp! 2
P — Ay + A, — 1)
% (P1g —Ppp — By + A —1) <
(P12 —Pap — 8, —1)!
A1 (8t e, H 1)
a p! (Plz —1722 + &y — Az)

(P13 —Pgp + 49!
(P12 —bap + A1 — 4)p)!
< (1’12 —Pa2 * A1>’

Ay +4A, 1
(3.42)

in which A, =p — A,.

Observe that Eq. (3. 42) is correct for the two extremal
patterns A; = 0 or A; = p, in which case it reduces
(properly) to the ordinary pattern calculus factor for
the U(2) denominator.

It is easy to prove by induction that the conjecture, Eq.
(3.42), is indeed correct. It is, however, essentially as
easy to prove the general result for U(z), and this we
now do.

Let us first give the generalization of the pattern cal-
culus rules for the U{n) denominator function D([ p[A]él)

1971

which has the A pattern [A;4,** A, ], where), A, =p.
We decompose [A] in the form

[a85 - A,] =[A,0-+" 0] +[04,0-- 0]

+ee-+[0---08,]. (3.43)
Next, the arrow pattern is drawn for the A pattern
[0---0A_0---0]:
A Ay 0 Ap-3 8p
SN eA S 6
dot 1

In this arrow pattern, there are A, arrows going from
dot 7 to each of the remaining dots. Above each dot
appears the shift associated with the sum of all the re-
maining A patterns in the decomposition (3.43). We now
associate an algebraic factor with each arrow according
to the pattern calculus rules (applied to row n), shifting,
however, each p(head) by the A, which sits above dot 7.
Thus, the algebraic factor associated with the arrow
pattern (3. 44) is

ilf[l (prn_pin‘ Ai)(prn—pin’— At 1
ier s (Pen— Dby — By + A, — 1.

(3.45)

We draw the n arrow patterns (3. 44) corresponding to

7 =1,2,...,n and take the product of all the algebraic
factors. Finally, we put in the number of paths factor
pl/B 1Al -+ A, to obtain the following conjectured
form:

1 [a] )mlz_ AptAayleer !
Pl g)on) = [P

-]

X I {dyey([m] +[A] = &,6()}2

Xoees (prn_pin-'—A'r—Ai‘l)l
CAglA e a
Lo (pm] + [A])

pin_l)jn+A

” i
X ) ) 1 (3. 46a)
i<l;[=1 (a; + A+ 1)! ( 8,4+ 1),

where D’ is the dimension operator D multiplied by the
numerical factors 112! «-« (n — 1)!:

D)) = D) x (@121 o = D) = | (B, ~2,,).
(3. 46b)
[Note that in making the last step in Eq. (3. 46a) we

have been careful to arrange the factors so that each
term in the binomial coefficient is nonnegative.]

The proof of Eq. (3. 46a) will be given by induction on p.
Note that the result is correct for p = 1, since each
allowed operator pattern (I') is extremal, and the result
reduces correctly to the usual pattern calculus factor
for the denominator function associated with row ».
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In order to give the induction proof of Eq. (3.46), we
first obtain a recursion relation. This is easily done
directly from the sum-over-paths formulation (3. 26b):

o ppl

-n )1 _I®
(4] =1 IdA(T)([nl] + [A'])}
ZD <[p (-)]) (Im)) g

xS [1] ?2, (3.47a)
/ A’ .
121 )0}

— Alr).

where
(4] =[8"], = (4]

This relation is just the geometrical statement that
there are n points [m] — A(1),7 =1, 2,3, ...,n,which
are one unit displaced from the final point of the path
from [m] to [m] + [A].

(3.47Dp)

The proof of Eq. (3. 46) now follows upon demonstrating
that it satisfies Eq. (3.47a). But we easily determine
that

VAN 2
{ 1 }2 n([p 6]><[ )
I

m + [& a7
D([p ~-1 0]>([m])/
1 111:11 (pzln n Ai)
=—- -~ , (3.48a)
i NI

wherep/ =p,, + 48,(i=1,2,...,n). Thus, we must

demonstrate that

(3. 48b)

But this result is an easy consequence of the general
summation formula (Al) of Ref.4. The general validity
of Eq.(3.46) has thus been established.

This result shows that there exists a significant exten-
sion of the pattern calculus rules in which patterns act
on patierns in new and different ways. (These examples
above are very likely only a first step in this program.)
We find it quite striking that these simple geometrical
rules [of the generalized U(n) denominator pattern cal-
culus] can effect completely the summation of the very
complicated sum-over-paths relation, Eq. (3. 26b).

D. Summary of results

Let us now summarize the results so far obtained by
giving the complete answers, including the phases.

The determination of the phase in Eq. (3. 7) proceeds as
follows. Since the denominator function is positive (we
always take the positive solution to x2 = a from the
pattern calculus results), the phase is uniquely deter-
mined by the fundamental projective operators appear-
ing in the left-hand side of Eq. (3. 3). Since Tyttt TaTy
contains 1 A, times,...,n A, times, it follows from Eq.
(2.20a) that the phase of Eq. Z3 7 is
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[Sto — DI2[S(p — 2))% - -+ [S(p —n)}*
5(—1)AP*1 *hpagterrrby

forp<n
_h forp=n ’

(3.49)

Our first complete result is

(T) (2]

P O =%, (p 0] D( [A].>
p pa’ (p) b0/,
(3.50a)
where
@ 6,= > 4, 8,=0, (3. 50b)

(b) the value of the restricted A pattern function Fj is
obtained directly from the usual pattern calculus rules,
and

(c) the value of the denominator function is given by the
positive root of Eq. (3. 462a),i.e., is now read off directly
from the generalized U(n) denominator pattern calculus
rules [henceforth called simply the U(n) denominator
pattern calculus rules, since they always reduce to the
usual rules for extremal patterns].

We also remark that for (I') - 7 the phase of Eq. (3. 50)
becomes +1 and agrees with our general “phase rule”
given in Ref, 4.

Our second complete result is
T pa (1)

0l =D%F, (P )

(r’) [a")

in which [A’] = [A'],-y and

-1
= El al, 8y =0. (3.51b)
i=

The value of the denominator function on the U(n — 1)
labels [m'] = [mq,-1 " M,-1,-1] is obtained from Eq.

(3.38a):
1 (P 1/2 (X)) 1/2
[» 0]) - <q> [:Dn-l([ml] + [A'])]
D m'
(" g )

where

(@ ¢g=T1,,= (3. 51d)

n-1
=27 A},
=1 '

and (b) the value of the denominator function is given by
the U(n) denominator rules applied ton — 1:

(a] ,
D([q 6]> D
(ar !

B (Ai)‘(A’)l---
| atoy, (m] + (A7)




CANONICAL TENSOR OPERATORS L

n-1 P - —p -1 + Al 1/2
x 11 (A;.+A;+1)!<"‘1 ” ’

i<j=1 ’ :

i AL +a;+1 (3.51e)
(This is obtained from Eq. (3.46a) by the appropriate
substitutions.)

In addition to these results, we also have four similar
expressions, which are implied by relations (3.13) and
(3.14). We note only the following one:

s )
0o -»l/
(

3.52a)

(T —[a]
[0—p]| =D%F, [ [0-5]
p —pa’ (p)

where

(a) 6;=0,+ 3 (p— A, (3. 52b)
i=1

and

—[a]

3 [AI!AZE oAyl
bt ([m] — [A])

P, — b, + AN]E/2
. .+ 1)! " ’ .
(a; +4; +1) (Ai va +1 )J (3.52c)

We remark that this denominator is given directly by
the (generalized) U(n) denominator rules where the rele-
vant decomposition of — [A] is — [A] =[—A,0-+- 0] +
[0—A,0+--0]+--+ +[0---0—A,]. The typical arrow
pattern (in the sequence of n arrow patterns) is obtained
by reversing the direction of the arrows in the arrow
pattern (3. 44) and placing a minus sign in front of each
A

1

Finally, we remark that the reduced matrix element
obtained from Eq. (3. 502a) for p =n (all zeroes in the
lower pattern) is also the matrix element

n
x I
i<j=1

[m], + (8], (r)

, 3.53
),y . (m),,_ 59

of the Wigner operator of the same labels since the

U(n — 1) matrix element has the numerical value unity.
One may then use the U(n) generators to obtain14.15
from this result the matrix elements of the general
symmetric tensor operator. Equation (3.12a) then gives
immediately the matrix elements of the U(n) conjugate
operator {0 — p), and by an appropriate shifting of labels
also of the SU(n) conjugate operator {p 0).

1

1973

E. A class of U(n) Racah coefficients and their limits

A certain class of Racah coefficients of U(z) can be
written down immediately from the results of the pre-
ceding subsection. The following coupling law is a
special case of the general coupling law, Eq.(3.1):

1
([p tq 6]> e 0] ([,, 6])
T (r,) (T)
(r~)
x|[p +4q 0]
1
(r,) (r)
=g 0 | 0] (3.54)
1 1
for [a(T'")] = [A(T")] + [a(T)].
Since
2] (7] (4]
Fol [p+q 0] |=Fqd [g0] | F [p0] ), (3.55)
(p+q)a (1) g4 (1) pa (1)
it follows from Eqgs. (3.50) that
1

<[p+q 6]) [q 0] <[p 6]>§ ([m] + [a"])
(r") (1) (r)

EVETC I
—D<H,+q o]> ()

] ] (3. 56a)
D([q 6]) (b (8D D([p 61) e
where [A”] = [A(T")], etc., hence,
[a"] =[a’] + [A]. (3. 56b)

We may, of course, write out similar results for the
Racah coefficient having irrep labels all of the type

[0 — k] or all of the type [E0]. More significant is the
fact that the Racah coefficients of these types can be
uwvitten out complelely from the Un) denominalor paltern
calculus rules. [This was first pointed out for U(2) in
Ref. 5.]

It was proved in Ref. 4 that each unique Racah coeffi-
cient must become a square-bracket coefficient in the
limit m,, = p,, = — ©. It is, nonetheless, satisfying to
show directly that the Racah coefficient (3. 56) exhibits
this property. Isolating the terms containing p, in Eq.
(3.56), one easily verifies that these terms have the
limit 1: Thus,

1 ;([P tq 6]) la o1} /lp b]) ([m], + [2"],)
1m
Myp =0 | (r")n-l (r,)n-l < (F)n—l

(r +s)!>< (p+q—7r —s)t
ris!

= [p!q! x
(p +q)!

1/2 . . .
[r +s O]\ ([s o] /Ir 0\ (m),.1 +[2"],-1)
“)g — s)!
(p—7)g S)] ( T, ) (), < (), >

1

(3.57)
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wherey =Ty, 4 =A) +8y ++ -+ A jands =T, 1 =A] +A5 +° - AL,

One easily verifies that

1
p+q 0], ||la 01, [[pOL. \ _ [P!q! ¥ s (b +q—1'~8)!]1/2 (3.58)
r+s 0,1 |Is 0, | 0],, (b +q)  rist  (p-mlg—s'] '
1
Using this result, the right-hand side of Eq. (3. 57) is seen to be precisely the square-bracket coefficient
1
<[1> tq 0]) [q 0]} /lp 0]> ([m],-y + [A"],-1)- (3.59)
(r")n—l (r,)n-l (r)n—l
T
Thus, the limit relation is verified directly for this
special case. p—q 00] (44 0] (4.1a)
We may continue to take the limits m,_; ,— — o,
M, o, —®,..., My, —©,in turn, of Eq.(3.57). The w

final limit yields precisely the Wigner coefficient

1
P+a 0 0) |l O
(r”) (") ()

{3.60)

Aside from their intrinsic interest, such limits imply
important structural properties of operator patterns.4
Indeed, one can now proceed to demonstrate (by the pro-
cedures of Ref.4) that the limit properties of the totally
symmetric projective operators induce uniquely the
complete upper operator pattern labels from the lower
operator pattern labels. [This property has already been
proved for all operator patterns which are uniquely
determined by their A patterns.4] Thus, starting from
U(2), the operator patterns are induced, by limits, from
the Gel'fand patterns. The upper operator patterns of
the symmetric projective operators in U(3) are then
induced, by limits, from the lower operator patterns,
which are U(2) operator patterns, etc. All operator pat-
terns of the tolally symmelric unil projective operators
may be consideved to originate from the limil properties
of the associaled veduced malrix elemenls. (A similar
statement applies, of course, to the [0 — p] and [p 0]
operators.)

This brief discussion is intended only to indicate how
one can verify the implications of limit properties for
the unique operators. Of considerably more interest is
the explicit verification that it is this same limiting
property which labels the unit projective operators in a
multiplicily set. To achieve this goal, it is first neces-
sary to demonstrate the property fully for all U(3) pro-
jective operators. Since we know the canonical splitting
of a multiplicity set in U(3), this first step is within our
reach. We accordingly now direct our attention to U(3)
solely.

4. THE CANONICAL SPLITTING OF THE
MULTIPLICITY IN U(3)
A. The origin of the splitting

Once we have obtained the Wigner operators (p — g 00)
and {gq0), we can obtain more general operators by using
the Wigner coupling

J.Math, Phys., Vol. 13, No, 12, December 1972

This Gel'fand pattern coupling is known, since the coup-
ling coefficient is
(max)
P g 0]|(p—q 00)1[g ¢ O]), (4.1b)
(M) () M)
and this matrix element is determined from knowledge
of the operator {p —¢ 0 0) itself.

The problem is, of course, that this coupling defines not
a single Wigner operator, but rather a linear combina-
tion (with invariant Racah functions as coefficients) of
the Wigner operators

(r)
? q 0),
")

(4.2)

where the sum is over all (T').

The key point in the canonical splitting!?! is to recog-
nize that if the coupled opevatov {p —q 0 Oy,ig g 0) is
restricted (0 a maximal shift in U(2), then the Wigner
operalors belonging to a multiplicily set collapse to but
a single lerm. More precisely this is the statement

[m] +{a] . : (m]
[n'] +[p 0] [p—q 00] [g 4 0] [m’]
myy MY, W ) UGS

= (invariant coefficient)

[m] + [a] ry [m]
X ({ [m]+[p0] [ q 0] (m]]), (4.3)
myy My, ") My

where [m] = [m;smygmys), (m'] = [mygmy,) and [A] =
[A18,4;] is any preselected [A] belonging to [p g 0]. Of
course, relation (4. 3) always holds whenever [A] uniquely
determines the operator pattern denoted by (I';). The
essential contribution of Ref.11 was the demonstration
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that Eq. (4. 3) still holds even when [A] determines a
muitiplicity set of operator patterns. (I',) then desig-
nates precisely one of the operator patterns in the mul-
tiplicity set determined by {A]. (Just which one remains
to be determined.22) Since the U(2) pattern [p 0] is the
unique A pattern such that [A}A5] has A} — A} equal to
the largest possible value for the (p —q 0 0)y,{q g O)
coupling, we designate the pattern by (T, ), where s de-
notes “stretched.” While we can guess from previous
experience with the adjoint operators and the 27-plet of
operators that, depending on the specific shift values
[A{A4A4], the operator pattern (') has either the form

b4 qg 0
ry,, O (4.4a)
I-|11
or the form
b q 0
p Tys )b (4. 4b)
Fll

this guess remains to be proved. Until this guess is
shown to be correct, (I',) denotes a single, but unspeci-
fied, opevator pattern belonging to the multiplicity set
determined by [A].

The property expressed by Eq. (4. 3) is entirely equiva-
lent to the following property of the U(3): U(2) projective
operators

(4. 5)

P

for all (I') belonging to the multiplicity set determined
by [A], except for a single upper operator pattern—the
one denoted by (I'_). Property (4. 5) is a very strong
statement: It asserts that all but one U(3): U(2) projec-
tive operator (in any multiplicity set) having maximally
stretched lower pattern is the zero operator.

This splitting is a fundamental property of the U(3)
operator system, yet it is hardly obvious a priori. How
does this remarkable property come about? To see this,
let us consider representing the projective operator

()
(4.6)

P

in terms of the elementary projections [100]} and [110].
One easily determines that each such operator (4. 6)
must have the structure as follows:

(T)
b q
b

= (U(3) invariant factor)

P

1975
T Ty Tg ] Ty
x i1 0 0 1 0 0o]|1 0 O
1 0 1 0 1 0
L1 1 L 1
o7, Ty ror
x |1 0 1 o (1 1 of,
1 0 1 0 1 0
L 1 1 -1
(4.7a)
where7 -+ Ty (1=7,=3) and T, 7,7,

(I =7, = 3) are any assignment of integers such that

p-q q N
El Alr) + 25 a) = [a]. (4.7b)

i=1

It is important to observe that, although we have indi-
cated a specific ordering in Eq. (4. 7a), our intent is that
this string of p elementary projective operators can be
put together in any arbilrary fashion, it being necessary
only to preserve property (4. Tb).

Next, let us decompose each elementary projection in the
right-hand side of Eq. (4. 7a) into the quotient form (2. 24).
We then observe that in the string of p elementary res-
tricted A pattern functions there ave no opposing arvows
in the stving of p covvesponding elementary arvow pal-
tevns. This means that these elementary restricted A
pattern functions, in any orvdering whatsoever, multiply

by addition of their corresponding A patterns. Thus, in
any rearrangement of the elementary operators, the
right-hand side of Eq. (4. 7a) yields the factor

(81 45 A4]
Fl [P q¢ 0]
[ 0]

(4.8)

The denominator factor together with the normalization
factor can contribute only a function whose values depend
on [m13m23m33], i.e., an over-all normalization, which
depends on the specific ordering. This implies that theve
exists but one opevator (4.6) in the multiplicity set de-
termined by [A]—this unique operator being the one we
have designated by the operator pattern (I",) (all others
being therefore zero), Furthermore, this operator has
the structure as follows:

(Ty)
p g 0
P 0
4
[, A, Ag] (A1 8, Ag]
= (phase) Fp{ [p ¢ 0] D\[p g 0]/,
[p 0] (4. 9a)
where
D<[A1 Ay A3]> (4. 9b)
[p g 0]
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denotes a new denominator function, whose values depend
only on the irrep labels [m], which has further proper-
ties yet to be determined. The value of the restricted A
pattern function in the numerator is, of course, given
completely by the pattern calculus rules.

Let us emphasize again that the results (4. 9) and (4. 5)
are uniquely implied by the geometrical properties of
the arrow patterns (the same property of no opposing
arrows used in the previous sections). There are no
free choices in this structure. [We establish in II that
even the operator pattern itself, (T" ), is uniquely assign-
ed by limits. |

B. Application of the factorization lemma
We wish now to apply this splitting to determine expli-

citly the projective operators

;)
(4.10)
b

The most instructive procedure makes use once again of
the factorization lemma.

Consider then the following boson operator

P
p 0
Blp ¢
p 0
b

0 (4) = (al)r~a (a13)a. (4.11)

Following exactly the procedures, whereby Eq. (3. 20)
was deduced from the boson operator of Eq. (3.15), we
obtain

(ry) (ry)
g% p g O p g O
¢ P 0 P 0
p ¢ P "
T T
3 1 0 O 1 0 O -4
=2
7=1 1 0 1 0
1, 1 .
T T
3 1 0 1 0
1% {4.12)
;;1 1 0 1 0
1 { 1 u

We can proceed with this expression in two distinct and
instructive ways. In the first method, we recognize that
the operator which is raised to the (p — ¢)th power is
just
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(r7 (r")
2, |p—q 0 0O p—q 0 0
) ,
p—aq O p—q 0

p—q ¢ »—q “

(4.13a)

and the operator which is raised to the gth power is just

(r/r) (r\//)

2 |a 0 0
& 1 v 1 (4. 13b)

q 4 q u

This corresponds to recognizing in the original boson
operator (4.11) that the first factor is
P —aq
p—q O
Blp—q 0 0] (4),
p—q O
b—q

(4.14a)

and the second factor is

q

(4. 14Db)

We next use Eqs. (4.13) in the right-hand side of Eq.
(4.12) and take the matrix elements of the expression
between the following U(n) * U(n) states,

(max) (max)
[m'] + [p0] [m’]
(m} +{a] ||| [m] , (4.15)
[m'] + [p0] [m’]

(max) (max)

where A is any A pattern belonging to [pg0]. This selects
one term from the left-hand side, since there is but one
(I'y) in each multiplicity set [if the multiplicity is 1 then
(T',) becomes the unique pattern]. The result is just the
expression of the abstract operator identity as follows:

(ry) 7 (ry)
p g O p q O
) 0 p 0
P P .
(rn 7t (rn
= . p—q 0 O p—gq 0 O
R p—a 0 p—q ©
p—q p—q
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(I-wl) + (r//)
19 g 0y 1 g 0O (4.16a)
q 0 q 0
q q

where the sum is over all patterns (I"’) and (I’”) such
that

[a7] + [a"] = [a] = [A(T)]. (4.16b)

We, in turn, infer from Eq. (4. 16a) the complele result
(except for phase)

(T's)

p g 0
P 0
p
(a1 Ay Ay
— (“l)p_AlFR [p q 0] D([AI AZ A3]>,
p 0] g 0]

(4.17a)

where the denominator function is now given explicitly by
Ay A, A

1 / ‘ D<[ 102 3]>
b a 0]

(a7 4 A'3]> (87 &3 Ag])

= 1 D
[A'].E[A"] /I ([P—‘I 0 0] D([‘I q 0]
(4.170)

where the summation is over all A patterns [A’] and
[A”], such that Eq. (4.16b) holds. In order to avoid re-
writing Eq. (4. 17a), we have identified the phase factor
by the technique used in obtaining Eq. (3. 49).

2

2

b

The value of the restricted 4 patternfunctionin Eq. (4. 17a)
is, of course, given completely by the pattern calculus
rules. Equation (4.17b) is also explicitly known from
Sec.3D. For completeness, we note the values of the
two denominator functions appearing in Eq. (4. 17b):

(a1 2y A’s])
D
<[p_q ool

(A1) Ay (ay)!

- [(,, — 1D ([m] + [27))

3 b —D.. + A\] 272
x T (a] + 8] +1)!<'3 3 ’)J , (4.18a)

i<jo1 aj+ar+1
AII AI/ A/I

D<[ 1 2 3]) ([m])
le ¢ 0]

3 [(q —ANDHg — ap!(g — AaY)!
q!D([m] + [Aa"])
3 o —p.. tqg— AT\ 172
x I (2 —A7— A7+ 1) Piz = b5 T4 7>
ic<j=1 2q——A;’—A]’.’+1
(4. 18b)

1977

{The denominator function (4.18b) is obtained from Eq.
(3.52¢) for n = 3 upon replacing A, by g —A7and p by q.
We also remark that the value of the denominator func-
tion (4. 18a) which occurs in Eq. (4.17b) is obtained by
shifting the labels [m] in Eq. (4.18a) to [m] - [m] + [a"],
ie,p, =P, + ALY

It is a remarkable fact that the boson factorization
lemma together with the geometrical properties of the

A pattern functions have led us uniquely to the result,
Egs. (4.17). Of course, the expression (4.17b) for the
denominator function, while explicit, is very complicated,
and one can not be too satisfied with it. The structure of
the result, Eq. (4. 17a), is however, quite elegant, and as
we shall see in II the denominator function itself pos-
sesses symmetry properties and structures of an unex-
pected nature. Yet it is these very properties which the
denominator must have if our program relating to null
spaces is to be fulfilled.

We now turn to a further structural interpretation of the
denominator function in terms of the sum-over-paths
concept.

C. The sum-over-paths formulation of the denominator
function

Equation (4. 12) has a second interpretation. Observe
that in the boson expression (4.11) we can write the

(# —q)a}'s and the ga}d's as a string of p factors in p!
ways, there being (g) distinct arrangements.

This commuting property of bosons implies that in Eq.
(4.12) we may similarly write the p — ¢ factors

T
3 |11 0 0 1 0 0
(4.19a
§1 1 0 10 )
1 —¢ 1 —u

~t

3 {11 0 1 1 0
(4.19b
E 1 0 1 0 )
1, 1,

in any order whatsoever, without changing the equality of
the resulting expression to the left-hand side. Again
there are (5) distinct arrangements.

Let us now introduce the notation

=1

(4.20)

1 1

Then we can write Eq. (4.12) in the form

ry) (r;)
vp ¢ O p q O
T
b 0 P 0
b2 ¢ p “
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= (g)—l Z) 27 P[P ( A, P, (A Yoo PP, (A )],
M@ (4. 21a)
where

()‘p"')\z"l)z (Tp_q--'Tz'rl:rq---;z‘?l), (4. 21b)
and where @ denotes a permutation of the p symbols

77 -++ 777 +++ T containing (p —¢)7's and ¢7's, and the
summation over ® is over all (2) distinct permutations
of these symbols. Note also that the summation over

any 7; index is from 1 to 3, that of any 7, index from 1 to

If we now take the matrix element (4.15) of Eq. (4. 21a),
we obtain the following abstract operator identity:

(ry) ' (ry)
» ¢ Ol |p g O
p 0 b 0
? b
= (g)'l E 2 O[PTIPO) - PTAP(,)],
M@ (4. 22)
Where the summatlon is over all (x TAgh ) =

(-r 717 l) such that Eq. (ﬁ 7b) holds We now
sée that the summatlon over @ in Eq. (4. 22) may be
dropped by the following simple device: Let any A; de-
note eilher a T;0r AT, . Then we may write

(ry) * (ry)
p g 0 |p ¢ O
b 0 b 0
p p
-1
= (5) >, P*(AP)P(AP) ©or PT()P(xy), (4.23a)
VRERY
where the summation is now over all sets (?L . )\2)\1)
containing (p —¢)7,'s (1 =7, = 3) and q-r 's ( ?i =3),
such that
p
27 ARy =[4] (4.23b)
i=1
Finally, upon defining
d, =d,y. A=TOrT, (4.24)

we obtain from Eq. (4. 23a) precisely the result, Eq.
(4 17a), where now the denominator function is expressed

/! (b))

— ! 1

(4.25)
4,2

YRR W W 7 A
D 2™ )‘p

Let us note the following features of the sum-over-paths
interpretation of this result:

(1) Each set of integers satisfying Eq.(4.23b) describes
a path from the lattice point [m m ,5m ;4] of R3 to the
lattice point [m,, + Ajmyg + Agimgy + Agl,and the
value of the correspondmg term defines the path con-
tribution to the sum, where the sum is now simply the
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expression of all path contributions from admissible
paths between [m] and [m] + [A].

(2) The paths are defined by six elementary steps
(shifts) [100], [010], [001], [011], [101], and [110]. The
normalization (£)°! is a direct consequence of the occur-
rence of two types of elementary steps.

(3) The number N of A(r)-type steps and the number N
of A(r)-type steps is uniquely determined by the shift
values [A;A;A,] and the total number of steps N + N=p.
[Hence, it is only necessary to specify that the)\ Tt Aghg
in the summation satisfy Eq. (4. 23b).}

(4) For g = 0, Eq. (4. 25) reduces to Eq. (3. 26b) (for
% = 3). [Similarly, for p = ¢ it agrees with the result
implied by our results of Sec. 3, but not noted explicitly.]

(5) In view of items (1)-(4), we see that the sum-over-
paths interpretation of Eq. (4.25) generalizes the usual
path formulation in two ways. An overall normalization
occurs to account for the two types of steps; and the
admissible paths in the sum are restricted to a fixed
number p. {Observe that in Eq. (3. 26b) the shift [a]
itself fixes the number of admissible paths.}

D. Recursion relations for the denominator function

The defining relation for the denominator function, Eq.
(4.25), is conceptually quite simple, but for determining
the properties of the denominator directly this relation
proves to be both complicated and difficult. We are
therefore led to approach the study of this function
through the use of recursion relations which it satisfies.

The simplest derivation of such recursion relations
proceeds directly from the sum-over-paths formulation,
Eq. (4.25). First, let us observe that the (£) sums in Eq.
(4. 25) each correspondmg to a definite ordermg of

(rt +++ 1) - 7), are, in fact, all equal. (This property
is clear from the derivation.) Thus, the right-hand side
of Eq.(4.25) may also be written in the form

1 1
= ]
' D<[A1A2A3]> 2 Aptihahy 1d)‘p o d*zd’&' ? (4. 26)
b q 0]
where Ayttt Aghy is a definile arrangement of
(T . 1)(7 . 71) satisfying, of course, Eq. (4. 23b).

In Eq (4 26), {iet us replacep byp —landg byg — 1
and denote the corresponding [ ] by [8445445], and
choose an arrangement of ( * X,2,) such that A, is
a 7. The relation

3
1 2 :Z) ’ il ’ 2 4
ID [Aa,4,4,] S (A} Ay AL i
[p q 0] a(r)

p—14qg—-10]
where [A’] = [A] — A(T), then follows immediately.

(4.27)

In order to simplify the recursion relation (4.27), it is
convenient to introduce some auxiliary quantities. We
first define for all 4,5 = 1, 2, 3 the quantities

xij = pi3 — P,

%30 (4. 28a)

noting that x;; = 0 and Xy = Xy In terms of the X we
also introduce

X = Xy (i,j, % cyelic in 1, 2, 3), (4. 28b)
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noting that
X, txy Fxy=0. (4. 28¢c)

Finally, we introduce the auxiliary function G (A;x) =
Gq(AlAzAs;xlexs) by the definition as follows:

1 2

D([AlAZAB])([mD

[P g 0]

= |:(p —g)D’'(m] + [A])/AI!AzlAal}

x| 1 % + A+ 1)1 Yy T4 .
i(l;_lzl(Ai 4, +1)! A+A +1 G, (a;x).
/ (4.29)

Observe that since &; + A, + A; =p +¢,the label p is
implicitly defined in G (A;x).

Using the explicit value of d A(;)([m]) given by the pattern
calculus rules and introducing the preceding definitions,
Eq.(4.27) yields the following explicit recursion rela-
tion for Gq(A;x):
%1% % 3G (A1 ApAg; X X X 5) (4.30)
= 8;85x5(85 —x;) (A5 + 2,04y +x3)(A5 —x3)

X GQ‘l(Al ~1, A2 — 1,A3;x1 + 1,x2 — 1,x3)

+ A Ax (A —xp)(A, + x3)(8y + xl)(A3 — %)

X Gyq(Ag, 85 =1, A3 —1;x3,%5 +1,x3 — 1)

+ A8 XAy —x3) Ay + X ) (A5 T x5)(A) —x5)

X Guq(A) —1,8,,85 — 1) —1xg,x5 +1).
Observe that for g = 0 the factor in Eq. (4. 29) in front
of GO(A;x) is just the value of the denominator function

(4.18a); hence, the boundary condition for our recursion
relation is

Gy(a;%) = 1. (4.31)

An equally valid recursion relation is obtained from Eq.
(4.27) simply by shifting d, 7, to the left of the denomi-
nator function in the sum. The resulting recursion rela-
tion for G, (A;x) reads
(kg + 85 —B3)lwy + A5 — Ay)lwg +4; —4y)
X Gq(A1A2A3;x1x2x3)
= A0, (x5 + A —AA, +x)(A; —x,)(A; +x3)
X (Ag —x3)G,4(A8) — 1, A5 ~ 1, Ag; %1% 5% 5)
tApA500 T Ay — Ag)(Ag Fxp) Ay —x5)(A, +xy)
X (Mg —%1)G, 1(A1, 8, —1,A; —1;x,x9%5)
t A58,y T A5 —81)(A) +23)(85 —x1)(A5 +7,)
X (A —x5)G (A —1,85,A; —15x,%9%4). (4.32)
It is noteworthy that in this second recursion relation

the x; variables are not shifted. The boundary condition
is, of course, as before: G4(A;x) = 1.

Two additional recursion relations for Gq(A;x) may also
be obtained from a relation of type (4.27): Simply replace
7 by 7. We will, however, not require these relations.
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The great advantage in using the recursion relations
derived above is that this approach makes evident many
essential properties of the denominator function, It is
already evident that the functions Gq(A;x) must exhibit
a great deal of symmetry. We defer, however, the dis-
cussion of these properties to II, where the proper-
ties of the functions G (4; x) will be developed system-
atically and fully. :

Let us note here the results for ¢ = 1 and 2, obtained by
the direct iteration of Eq. (4.30). The result forg =1
is easily found:

G (A5x) =~ A18,(8; x50, —x5)
—8585(8g T2y 085 —x;) = A (A5 T xp)(A; —xp)
— AjA A4(A; + Ay + Ag), (4.33)

where, in obtaining this form, it is essential to make use
of relation (4.28c). The result for g = 2 already pre-
sents a formidable calculation. It can, however, be
accomplished directly from Eqgs. (4. 30) and (4. 33) with
the result

G,(a;%)

={ay(a, = 18,8, — 1)(A; +x5)(A; +x5—1)
X (Ay —x3)(Ay — x5 — 1)
+ (cyclic permutations of 1, 2, 3)}
+{2A18,0,(8, — 1)(A, +x)(A; —x; ) (A5 + x,)
X (A, —x,) + (cyclic permutations of 1, 2, 3)}
+2(8; + A, + A, —1){A (A, ~DAy(a, — 1)
X Ag(Aay +x5)(8, —x5)
+ (cyclic permutations of 1, 2, 3)}
T A (A —1)Aay(ay —1)Ag(A5 —1)(A; + Ay +A5)
X (Ay + Ay +4A5~—1). (4.34)

The divect calculation of G4(A;x) is an almost impos-~
sible task. Fortunately, it is not required. Further
detailed calculations of this type would lend little to
one's understanding of the sfructure of the result. Since
the discussion of structure is the central theme of the
present work, our indirect rederivation [to be given in
II] of Gq(A; x), using only its structural properties

is certainly more instructive, and probably more im-
portant, than the mere fact that this rederivation shows
that an alternative form for the denominator function
exists.

For completeness of the present paper, however, let us
note this alternative form for Gq, in detail. We will,
however, give our initial intuitive arguments leading to
this form, deferring a complete proof to IIL.

Suppose there were no shifting of the variables (either
in A; or x,) in the right-hand side of Eg. (4. 30). Clearly,
the general solution to this simpler recursion relation
is just

[G4(a;5%)]9, (4.35)

where g is an ordinary power.

It is evident that some sort of “factorial rule” is opera-
tive in obtaining the actual solution to Eq. (4. 30), which
has the role of accounting for the shifts in the variables.
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This type of behavior is quite familiar from Gel'fand's23
symbolic interpretation of the (known) SU(2) Wigner
coefficients in terms of the Jacobi polynomials. Indeed,
this type of behavior can be understood in much simpler
terms. Consider the binomial theorem written in the
form

(x +9)9/q! = 25 xsyt/sltl.
t

S,
s+i=q

(4.36)

It is a remarkable fact that under the substitutions
yi/El = (2),

& +y)/q! = (%;3),

xS/S! ——>(:), (4.37a)
(4.37b)

we obtain from Eq. (4. 36) the following correct general
binomial relation

=5 O,

s+t=q

(4.38)

(This procedure generalizes, in fact, to the multinomial
theorem.)

It is even more remarkable that this same procedure
with only slight modifications may be used to conjecture
the solution to recursion relation (4. 30): Using the
quadrinomial theorem, we expand [G,(4;x)]9, collecting
together the powers of A,, A,, A5, but leaving the powers
in (A, +x5), etc.as well as(A; + A, + A,) undisturbed:

[G,(a;x)]¢
= (1)1 5 AT hAL RalTRs(a, + A, + A,
®
X (Az +x1)kl(A3 "xl)kl(Ag +x2)k2(A1 —xz)kz
X (By + 2558y —x3)"3/ (k) (B)! (R3)! (!,

(4.39)

where the sum is over all nonnegative integers (k) =
(kykoksk,) which add to g,i.e., kg +ky + k5 + 2y =gq.
In this result, we now make the replacements

- A,
af ki/(£1~ki)!—>( ' >,
qg—4k

A, +x
(A, +x1)"1/k1! - (72 1], ete.,
ky
with the single exception: We replace (A, + Ay + A3)k“/
(k4)! by

Ay + Dy + Ay —ky —ky —ky
k4

The result is the following polynomial in x,x,,% 4,
which we denote by G¢ (A;x) (¢ denotes “conjectured”):

Ay + A, +A3—k1—k2—k3>
k

Gg(asx) = (—1)2q! 2 (
(k)

4

Al A2 +x1 A3—x1
X (k) — By)! (q-—k1>< ky >( ky )

Az A3 +x2 Al-xz
X (ko) (g — ky)! <q~k2>< k, >< kg )
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A Ay +x\ /A, —%
2! — B\ 3 1 3 2 3 .
* Balle d <q_k3>< k3 >< ks >

(4.40)

One then easily verifies

G (a;x) = G;(A;x) (4.41)
for ¢ = 0,1, 2. The proof that this result is correct for
arbitrary g requires a careful analysis of the properties
of Gq(A;x), and we defer this study to II. [A direct proof
that G (A: x) satisfies, say, recursion relation (4. 30),
in general, has so far eluded us.]

E. The “stretched” Racah coefficients

We are now able to give explicitly the Racah coefficients
which occur in the coupling

i3 . (Fs)
[p—q 0 0] [g g 0]) = ([p g 0] (4.42)
) ) ’ (M)

These operator pattern couplings are uniquely deter-
mined by the following relation [which is a special case
of Eq.(3.1)]:

(r) (r"
p—q 0 O q q 0

p—q 0 q 0
p—q q
S {max) 2
=5flp a O\ {[b—q O 01} [flg ¢ O\,
2( (Ts) > (r) < (r" )s
(ry)
« pp d 00 , (4. 432)
b

In this expression, (I'*) and (I'") are any arbitrary opera-
tor patterns appropriateto [p —¢ 0 0O]land[g ¢ 0],
respectively. (I',) is then a unique (but as yet undeter-
mined) operator pattern belonging to the multiplicity set
determined by the A pattern

[a] =[a’] + [a"]. (4. 43Db)
Next, we use Egs. (3. 50), (3. 52), and (3.14) (for n = 3)
together with Eq. (4.17a) to obtain

S (max) z
¢ ([P q 0]> [p—q 0 0] ([q q 0]>' ([m] +[a])
e (ry) (r") (r" S
_ (2, 8, A3]> -
D( A [
T
D([P—q 0 0] () + [2"D B ¢ ¢ 0] (e

(4.44)
where the denominator functions are given, respectively,
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by Eqgs. (4. 29) (positive square root) and (4. 18), and
where, of course, [A] =[A’] + [A”].

Since the lower Gel'fand pattern couplings (Wigner coef-
ficients) are explicitly known, Eq. (4.42) now becomes an
equally explicit relation for obtaining all the U(3) Wigner
operators of the type

(ry)
» q 0]
(M)

(4.45)

Let us also note that the coefficient (4.44) is not the
most general Racah coefficient which we can obtain
from Eq.{4.17a). We can use the orthogonality of the
Racah invariants4 to move the Racah invariant in Eq.
(2. 4a) to the left-hand side. Upon particularizing to

n =3 and choosing [M']=1[p'q' 0], [M]=[p" q” 0],and

1981
(ry) 7
p g 0
X p 0
p
[ (max)
- p q 0 pl ql 0 pll q” O
L p’
(ry) (ry)
X |p’ q’ o |p” g’ 0, (4. 46)
pl O p/r 0
pl pl!

wherep =p’ +p” andg =q’ + 4" [A reduced matrix
element appears in this result in place of a square-
bracket invariant because the U(2) Racah invariant part
of the square-bracket invariant is unity.] Using Eq.
(4.17a), we now obtain

y" = (F75.0), we obtain
S (max) (
((1) q 0> ' q 0] ([ "q" 0]>>
)_ (ry) (ro) (ry) s
|
{max)
<[1> q 0]) ' qa 0] <[ "oq" 0]) ([m] + [a])
(r,) (r:) (rn
b’ q’ 0]
" q" 0] (6" 9’ 0]
~rfwaa)(” . )/D( L) op
(5 0] p" 0] [p'q’ 0]

(&) 85 A4] m/([Ai A Afs]) ” Y <[Ai Aj AH]) -
xp<[p q 0]>([ D/o(r ot o) (27 )

Equation (4.44) is a special case of this more general
result. The extra generality afforded by this coefficient
is, however, not required in the following sections.
F. The general projective operator
Let us now outline an explicit procedure which could be
used, in principle, to determine the general projective
operator
(r)
pgq 0]
»)

We first note that the canonical splitting proved in Ref.
11 implies the existence of the following zero operalors:

(4.48)

(ry
P q 0] =0 (4.49)
44 0
p—a +1
forallk=1,2,3,...,M,andalla =1,2,...,k—1,

where (I'y), (T'y), ..., (I'y) denote the M operator pat-
terns which are determined by a specified [A; ApA4]

(4.47)

[

belonging to [p ¢ 0]. Observe that (I';) now denotes the
pattern previously denoted by (T, ). We cannol as vyel
make any definite assignment of (1“1), (Tg)s ooy (T)
onto the M operatov patievns having the prescrz’bed A
pattern. We only know that such an assignment exisis.

Next, consider the coupling law (2. 4) for U(3) specialized
as follows:

(ry) . (R}
p g 0| =ip—g 0 0 g q 0},(4.50)
p 0 p—q 0 g 0

Y ) @),

where we note that for the relevant labels the square-
bracket invariant coupling reduces to a U(2) Racah in-
variant operator coupling, as indicated, on the lower
operator patterns.

In order to give this coupling explicitly, it is convenient
to introduce the following abbreviated notations in which
we suppress the labels p and ¢:

o (0 o
S

q
Ownam = U ‘<1’ 0) p—q 0 (‘1 0)
o“q+7"P)
\ y —a a /)
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(r’) (r~
X {p—gq 0 0} |g q 0], (4.51a)
P —q 0 q 0
'y—a o
Reroana™
S (max) 2
= ¢ <{P q 0]) p—q 0 0] <[q q 0]>g-
( (T, (r’) T /.
(4. 51b)

Throughout this discussion, (T';), (T'y), ..., (L) denote
the distinct operator patterns determined by a specified
A =[A; A A ] belonging to [p ¢ 0]. Similarly, (I'") and
(') always denote operator patterns belonging to

[» —q 0 0] and [¢ ¢ 0], respectively, which satisfy [A’] +
[a”] = [A] ([A] specified).

With these notations and conventions, we may write Eq.
(4.50) in the form

(Ty)
p q 0 = (I‘%%ru)R(rk)(r’)(F'I)OY(F’)(FI'). (4. 523.)
p 0
Y
Similarly, we obtain
. (T}
O, royrny = kZ)l Repyaoaen [P 4 0, (4. 52b)
p 0
Y
which, in turn, implies the following relation:
. Ty T (T
22%‘ p q O |p g O
) ) 0 » 0
Y Y
= e OrnaPyanany (4520

We remark that the operator Oy ro») is completely
known, the Racah invariants (4. iBb) are unknown (except
for £ = 1), and the projective operators defined by Eq.

(4.50) are likewise unknown (except for 2 =1 and v = p).

We assert: The general structuval velation, Eq. (4. 50),
and {he canonical splitting condilions, Eq.(4.49),
uniquely delevymine all U(3) projective operators of the
form

(r,)
(4.53)

Y

excepl for phase; furthermove, they delfermine all the
Racah invariants of the type given in Eq.(4.51b).

Let us give this construction. We begin by choosing
v =p in Eq. (4.52c). The summation on the left-hand
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side then reduces to a single term 2 = 1. Thus, the
operator

(ry
(4. 54a)

p

is uniquely determined except for phase [Equation

(4. 52c) reduces, in fact, to Eq. (4. 16a).] We choose the
phase?4 and proceed to Eq. (4. 52b) for y = p. The right-
hand side of Eq. (4.52b) reduces to a single term k£ = 1.
We use this equation to determine the Racah invarijant
R(rl)(r')(r")' Using this Racah invariant in Eq. (4. 52a),
we obtain the projective operators

(ry)
(4. 54b)

Y
forally =0,1,...,p.

We now start the procedure all over, beginning with

v =p — 1 in Eq. (4.52c). The left-hand side reduces to

two terms, k2 = 1 and 2. But the (T';) operator is known
from Eq.(4.54b). Hence, Eq. (4.52¢) and our phase con-
vention determines

(Ty)
p g O
p 0
p—1
We next proceed to Eq. (4. 52b), setting y =p — 1. The
right-hand side reduces to two terms, 2 = 1 and 2. The
£ =1 term is completely known as is the projective
operator part for 2 = 2. This equation uniquely deter-

m'ines R(rz)(r')(r »y- Going to Eq. (4. 52a), we now deter-
mine

(4. 55a)

(Ty)
p g 0 (4. 55b)
b 0
Y
fory =0,1,...,p —1.

One easily sees that continuing this procedure leads to
the proof of the assertion made above. Let us remark
that since [A] was arbitrary, our proof applies to the
operators in each multiplicity set, including multiplicity
one.

We can now make the final statement: The general coup-
ling laws and the canonical splitting in U(3) delermine
uniquely all projective operatovs excepl for phase. The
same stalement applies to all Wigner operalors.

Proof: The U(3) projective operator [p ¢ 0] is ob-
tained from the coupling

() . {R}
[p ¢ O] =|lp—q 0 0] lg q 0] (4. 56)
&) . -
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But the lower operator pattern couplings are known, and
the upper operator pattern couplings are just the
R(r)(r')(r") obtained above. (A similar proof applies
directly to the Wigner operators.) Finally, the general
projective operator [M] is obtained from those of the
type [p ¢ 0] by the following relation:

i 1 M3
1P Foo 11
My, My, Miyzp =1 1 1
Y12 Y22 1 1
Y11 1
I3y — M3
[yp—Mjz3 Tpp =My
x| Mg — Mgz, Mgz — My 0
v12 —Mas3 Y22 —M33
v11 — M33

(4.57)
for arbitrary integers M, , = M,5 = M5,

The algebraic procedure described in this section is
logically complete; but it is a major task to implement
these techniques to obtain explicit results. Indeed, the
only explicit operator we have given is the important
one which occurs at the very first step, (4. 54a). Here it
was the underlying geometrical properties of the arrow
patterns which led to a relatively simple interpretation
of the structure of this operator. Our principal program
is to uncover additional structures which will make
these seemingly complicated algebraic manipulations
explicable.

In this connection, we would like to note25 that in U(3)
there is precisely one projective operator which is also
a Wigner operator--the isoscalar:

(r) (r)
p q 0|l =/p g O (4.58)
q q q q
q q

Thus, one could construct this operator from the coup-
ling, Eq. (4. 56), and proceed to determine the general
Wigner operator

(4.59)

by using the generators.

G. The null space of the Wigner operator (T')

As remarked in the preceding section, the only explicit
operator which we have constructed is the one labeled
by (I'y) = (T'y). This operator already exhibits consider-
able complexity, and clearly one must understand this
structure before embarking on the more general pro-
gram. Accordingly, we will now determine the conditions
which specify the null space of the Wigner operator
labeled by (T',)

1983

If one examines the general expression [Eq. (2. 46) of
Ref. 4] relating Racah invariants to Wigner operators,
it is clear that the null space of a Wigner operator
corresponds to the vanishings of a Racah coefficient.
In particular, if we denote the null space of the Wigner
operator (4.45) by JU(T,), then

Sall irrep spaces with labels [m]:{

1o [[81 85 85] B .
() =

Thus, this null space is determined by the zeros of the
denominator function

D<[A1 Ay As]) _
p q 0]
Examining Eq. (4. 29), one sees that the determination of
the zeros of the denominator function requires detailed
knowledge of the properties of the function G (A;x).
These properties are developed fully in II, where it is
proved that 0U(T,) = 0U(Iy), where JU(I}) is the maximal
null space occurring in the series given in Conjecture 1
of the Introduction,

{4.60)

Il

n(r,)

(4.61)

5. CONCLUDING REMARKS

We began our discussion of the structural properties

of the canonical tensor operators by examining the totally
symmetric operators in U(r). The underlying structural
property which accounts for the simplicity of a class of
these operators (and their conjugates) was shown to be
geometrical in origin—the no opposing arrow property.
[The factorization lemma was demonstrated to be a
useful tool for obtaining explicit abstract results with-
out requiring the more technical manipulations of the
algebraic method (Racah invariants, etc.).] We were then
led to the discovery of the more general arrow pattern
analysis for the denominator functions as well as the
sum-over-paths formulation.

Turning to U(3), it was demonstrated that the origin of
the canonical splitting was again geometrical. However,
thus far, this property leads directly to the construction
of but one operator in each multiplicity set, although the
canonical splitting determines, in principle, all opera-~
tors.

The outstanding problems of most immediate interest
are for U(3): We must demonstrate that the null space
of the Wigner operator labeled by (T,) is, as asserted,
the maximal null space. The explicit form (numerical
array) of this operator pattern must be obtained. These
two tasks require further development of the properties
of the function G, (A;x) and are carried out in the second
paper of this series. Finally, there is the very difficult
task of implementing the construction of the general
projective operator in U(3) in accordance with the cano-
nical splitting of the multiplicity. While some progress
has been made in this direction, the task remains, for
the most part, incomplete.

One can still proceed a great deal further with the dis-
cussion of the general structures of tensor operators in
U(n). We shall continue this analysis in the third paper
of this series, obtaining in the process new structural
results for U(3).
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The canonical splitting of the multiplicities of the unit tensor (Wigner) operators in U(3) was used in I to determine explicitly
one Wigner operator in each (arbitrary) multiplicity set. The denominator function whose zeroes define the null space of this
Wigner operator is presented in a new form from which the complete identification of the null space is made. Using the pro-
perties of the intertwining number of U(3), the null spaces of all the U(3) Wigner operators are determined, and it is demon-
strated that the null spaces of the operators belonging to a multiplicity set are simply ordered by inclusion. The Wigner opera-
tor previously obtained from the canonical splitting is shown to be the one having the maximal null space for its multiplicity

set.

1. INTRODUCTION AND RESUME

The present paper continues with the study, initiated
in the first paper of this series,! of the structural
properties of the canonical tensor operator labeling
in the unitary groups. We now direct our attention to
the symmetry group U(3), since the existence of the
canonical splitting of all multiplicities [for U(3)] has
been previously proved.2

A general procedure for constructing these unique (to
within phase) operators implied by the canonical
splitting was outlined in Paper I. It was emphasized
that, while the procedure is definitive, the explicit
construction of these unit tensor (Wigner) operators
is a difficult task. Furthermore, even if accomplish-
ed, the resulting matrix elements are likely3 to be
too complicated to understand unless one undertakes
simultaneously the study of the structure of each
result.

We were able to demonstrate,! in particular, that
each multiplicity set of unit projective operators
contains one operator whose structure is uniquely
and simply determined to within a normalization by
the geometrical properties of the arrow-patterns of
the fundamental projective operators and their con-
jugates. (Indeed, it is quite likely that the origin of
all the unit projective operators in a multiplicity set
will ultimately be related to the geometrical proper-
ties of these arrow-patterns.) This led to the explicit
form

(ry)
p g 0
p 0
P
(A1 8, A4
s (—1rarg (b g o |[pff1 22 %))
{(p ¢ 0]
[p 0]
(1.1)

where Fj is a restricted arrow-pattern function
whose value is read off directly from the pattern cal-
culus rules. The denominator function D is a seem-
ingly very complicated function, which nonetheless
could be determined explicitly through the use of the
Factorization Lemma. The resulting form was, how-
ever, too complicated to understand directly. Turning
to the sum-over-paths formulation (which again used
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the Factorization Lemma), we were able to derive in
a simple way two recursion relations satisfied by the
denominator. In this paper, we will approach the
study of the properties of this denominator function
through these recursion relations,

The properties of the denominator function D are far
more important than its occurrence in Eq. (1. 1) would
seem to indicate. This is true because it is the
zeroes of this denominator function—the set of irrep
labels {[m]} such that the denominator function vani-
shes—which determine completely the null space of
the Wigner operator labeled by (I';).? Since the prin-
cipal aim of this series of papers is to illustrate and
discuss structural properties of the canonical tensor
operators, a complete elucidation of the properties of
the denominator function is central to this purpose.

Let us note from Ref. 1 that the denominator function
may be written in the following form:

[Ay Ay A4]

D<[p g 0 ]>([m])
_ [ AjlA 145! l’»jl

L+ @)D ([(m] + [A]) i<je1

x( xij+Ai )]1/2( (p + ¢! >1/2
Ay +4;+1 (p—a)!G (a;x) ( ’

1. 2a)

(A, + 4, + 1)1

where
X35 = Piz — b3,
and
G, (A5x) = G (A1 AgAg ;X1 x0%3),

(1. 2b)

(1. 2¢)

x; =% (,7,kcyclicin 1,2,3). (1. 2d)
Let us observe: The first square root factor in Eq.
(1. 2a) is precisely the result of applying the genera-
lized denominator pattern calculus vules to the A pat-
tern [A1 By 03], using a path weight appropriate to

[p + g 00]. We insist that this factor has not been
artifically introduced, since for g = 0,

Gola;x) =1, (1.3)

and the occurrence of the factor is essential.

Let us now summarize the plan of this paper. In Sec.
2, the properties of the function G q(A;x) are develop-
ed in detail. The proof is given that

G, (83%) = Gg(a;x), (1. 4)
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where the function G5(A;x) was given explicitly in
Paper I. These propertles include the determination

of the symmetries of G (A x) and the determination

of the zeroes of G ( ) As previously noted, know-
ledge of these zeroes 1s essential to the d1scuss1on of
the null space properties of the Wigner operator
labeled by (T",).

Since the role of the null spaces in the characteriza-
tion of the canonical tensor operators is basic to our
emphasis on structure, we give in Sec. 3 both alge-
braic and graphical representations of the intertwin-
ing number of three irreps of U(3). This intertwining
number, in turn, is then shown {o determine a priori
the null spaces of the Wigner operators and the nest-
ing property of the null spaces of the Wigner opera-
tors in a multiplicity set is demonstrated. (Hence,
the null spaces are simply ordered.)

In Sec. 4, the uniquely determined (by the zeroes of
the denominator function) null space of the Wigner
operator labeled by T'; is shown to be precisely the
maximal null space determined by the abstract pro-
perties of the intertwining number. Observe that we
have no choice in the determination of these null
spaces.

Up to this point, the operator pattern (I",) has been a
mere label, although from general principles we know
1

xlxzngq(£1£2§3 §x1x2x3) = Elgzxg(gg —Xl)(§3 + xz)(£1 + x3)(£2
+ Epbaxy (8 —x){Ey + x3)(Es + 21 )Eg —x4) Gq—l(g].! £y —
—x5) Goy(81—

+ Esglxz(‘gz —x3)(52 + xl)(ga + xz)(‘g’l

(xl + 52 - ‘Ea)(xz + 53 - gl)(xs + 51 -
= 5152(953 + £ - gz)(gz + xl)(§1 "‘xg)(gl + X3)(€2

+ Eabaley + £y — Ex)(En + xg)(Ey —x3)(Ep + 2 W Ez —x1) G 18y, 85—
+ fggl(xz + &5 — 51)(‘51 + x3)(§3 “xl)(gg + xz)(£1 "‘xz)Gq—l(‘El -

where
Go (£ ,x) =1,

We note that either of these recursion relations de-
termines

(2. 2¢)

= 5152(51 + xs)(gz —“xg)
— £x65(8, + % )(Eg —%1)
— Egkq(E3 + x0)(Ey — x3)
— by EgkglEy + &y + &),

where relation (2. 1) must be used to obtain this form.
One could, of course, continue to iterate, say, Eq.

(2. 2a) directly to obtain G ,(£;x). However, this
direct iteration does not lea.d easﬂy to the answer we
seek, namely, that G (& x) is a polynomial of degree
2¢ in the variables x (Proposition 2 below), We
therefore follow the course of studying the recursion
relations directly.

G1(&;%)

(2.3)

B. Symmetry relations

The first property of the function G,
evident:

is almost self-
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that it belongs to a multiplicity set of operator pat-~
terns having A pattern [A;A,A5]. In Sec. 5, we show
how the specific numerical assignment of this pattern
is induced by taking limits.

2. DETERMINATION OF THE DENOMINATOR
FUNCTION

A. Recursion relations

We wish to determine the function G q(A ;%) through
properties which are implied by the two recursion
relations which it has been shown to satisfy.l We
gain greater generality (thereby simplifying some of
the proofs to follow) by replacing the integral para-
meters Ay, Ay, Ay by arbitrary parameters &y, £,, 5,
respectively, where £ = (£, £,£5) may be any point of
R3. We furthermore regard the point {(xyx5x5) as an
arbitrary point satisfying the barycentric condition
%Xyt Xy x5 =0, 2.1
i.e.,x = (x4%,%5) is an arbitrary point in the M&bius
plane.4
We seek the functions G _(¢;x), ¢ =0,1,...,which

satisfy the two recursmn relations as follows [ef.
Egs. (4. 30)-(4.32) of Ref. 1]

£2) G (81 £p83;%145%3)

—%3)G, q(k; — 1,8 — 1, E35%0 + Lxp —1,x5)
1,85 — 1%, + 1,65 — 1)
L&y, 83— 1,5y — Lxg, x5 + 1), (2. 2a)
~%3) G g8y — 1,85 — 1, §5;0959%3)
1,85~ 1;xx,%3)
1,85, 83 — 1;x1205x3), (2. 2b)

Lemma 1: The function G _(§;x) has the symme-
try: G (PE Px) = G (&, 6,p%), where P denotes a per-
mutation of the indices 1,2,3 (P € S3) and &, is the
signature of P.

Proof: The function G4 {§;x) = 1 certainly posses-
ses this symmetry. It is also evident, by inspection,
that the recursion relation (2. 2a) shows that G; pos-
sesses this property, if G, ; does. The result follows.

To obtain the next property, it is convenient to note
that the factors on the right-hand side of Eq. (2. 2a)}—
the factors that multiply the G, y—are but cyclic per~
mutations of a single funetion. That is, we define the
function g(&, x) to be

glE;x) = Elgzxs(ia ——xl)(§3 + xz)(§1 + x3)(§2 - x3)-
One next observes that g(¢;x) has the symmetry
glE1E0kg ;1 x0%g) = g(&y, E3 — X1, &5 + 24 ;X1 XX 3g)

(Verification of this symmetry requires use of the
relation xy + x5 + x5 = 0.)

Using the recursion relation (2. 2a), one now sees
easily that this same symmetry extends to the
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G,4(&,x), since the symmetry is obviously true for
Gy = 1. Hence, we have proved:

Lemma 2: The function G ,(, x) has the symmetry
Gq(gl, Ea—xq, 8, + x4 1A XX g) = Gq(£ $x).

The symmetry given in Lemma 2 has the feature that
the x's stay fixed while the &'s are changed. A simi-
lar feature occurs in the second form of the recur-
sion relation (2. 2b). By using both recursion rela-
tions, we will obtain a symmetry for G in which the
x's vary and £'s stay fixed.

Lemma 3: The function G (£, x) has the symmetry

Gq(§1£2£3§ —xy— &y + &3, —x5— §3 + &y,
— X3 — 51 + 52) = Gq(ﬁ;x).

Proof: Let us assume that this symmetry is true
for G,_;. Next in the recursion relation (2. 2a), we
make the substitutions

.
%) —xy—Ey t by, Xy —xy — 5+ &y,

g > —xg3—~ & + &, (2. 4)
(Note that this preserves the relation x, + x5 + x3 =
0.) It will now be observed that the right-hand side of
Eq. (2. 2a), after the substitution is made, becomes
precisely the right-hand side of Eq. (2. 2b)! [Let us
be explicit and note that there is an over-all minus
sign that will cancel out. Moreover, we should note
that we have used our assumption that the symmetry
holds for G,_; in making this identification with the
right-hand side of Eq. (2. 2b).] It is furthermore seen
that the left-hand side of Eq. (2. 2a), after the substitu-
tions of Eq. (2. 4) (and canceling the minus sign), now
shows, by Ed. (2. 2b), that the symmetry must hold for
G, The symmetry is obviously true for G, = 1;
hence it holds in general.

The symmetry given by Lemma 3 may be put more
perspicuously if we introduce new x; variables:

xhy =xy + 5 (63 — &),
(2. 5)

xy =%y + 3k — &3),
x3 = x5 + %(51 — 52)

The subsidiary relation Zx; = 0 now implies that
Zx; =0.

In the variables {x/}, the symmetry given by Lemma
3 becomes the statement: G/ (§;x") = G (§; —«7).
That is: The function G}{¢;x’) = G,(£;x) expressed
as a function in the barycentric (Mobius) plane {x'}
shows central symmelry in the ovigin x; = 0.

The symmetry properties given in Lemmas 1-3—and
combination of these symmetries—may be put in a
very elegant form. Let us write the function G, in the
form

£, E3—xp Eytx
G ;%) =G | & & —xy; E3+x, (2. 6)
£3 Ep—x3 &5 tx3

Then all the symmetries implied by LLemmas 1-3 are
contained in the following statement.
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Proposition 1: G q(g ;%) written in the form given
by Eq. (2. 6) is invariant under all permutations of
rows and columns, and under transposition.

Proof: Lemma 3 is the statement of invariance
under exchange of columns 2 and 3.

Lemma 2 asserts the invariance under transposition
(upon noting the subsidiary condition Zx; = 0).

Lemma 1 is equivalent to the invariance under all
permutations of the rows, combined with an exchange
of columns 2 and 3 if 6, =— 1.

Transposition, followed by exchange of rows 1 and 2,
and again transposing, is equivalent to exchange of
columns 1 and 2. Thus, all permutations of the
columns can be generated.

C. The polynomial property

The importance of these symmetry relations, estab-
lished in B above, is that they enable us to prove an
essential property of G ;:

Proposition 2: The function G ,(£; %) is a polyno-
mial of degree 2¢ in the variables x{,%5,x3.

Proof: Consider the right-hand side of Eq. (2. 2a),
and let x5 = 0, so that the first of the three terms
vanishes. The right-hand side thus takes the form
(x3 =0=2x) =—xy5 = x):

RHS = £1£2§3x(x + &)k + Ez)(x - 53)
X {Gq-l(gl - 1, gz, ‘53 - I’x - 17 - X, 1)
— Gq-1(51, §,— 1, 53 —Lx,—x +1,— 1)} .

Using Proposition 1, one sees that the two G ,_; above
are equal; hence, the right-hand side vanishes for

x4 = 0. Therefore, the right-hand side has x5 as a
factor and thus, by symmetry, the factor x,x,x5.

That the degree is at most 2¢g follows easily by in-
duction. That the degree is precisely 2q follows by
examining a special case given below [Eq. (2. 7)].

We now turn to developing explicit special cases for
G, . The simplest such case occurs for £; = 0. It
follows easily from Eq. (2. 2a) that G (£,£,0;x) has
the form

G, (E1820;1x0x3) = (— 1)4(g )?
GG e
q q q q
where

z
():z(z—l)...(z—q+1)/q! (2. 70)
q

denotes the binomial function.

Using Proposition 1, this result can be given a wide
variety of forms.

Let us note, for completeness, that this result suffices
to establish that the G q polynomial possesses precise-
ly degree 2g.

More interesting results obtain for special values of
the x; variables. Let us take x; = §5. It follows
easily once again from the recursion relation (2. 2a),
that we have the result
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Gq(glgzga; £3,%, — 3 —x)=(—1)a(q)*

WO e

independent of the result given in Eq. (2. 7a). Actually
both results may be given as special cases of an ele-
gant general result:

Lemma 4: Let G, be written in the form
£, E3—x & tx
Gyl &2 &1—%p E3+x,
£3 Ep—x3 &t

and define the nine entries in this 3 X 3 array to be
(g;;). 1f one of the entries is zero, say & 5, then

G, = (—)q(q!)4<g11> <i13> (izz> (é;sz).

q

Note that the entries for the binomial functions in
this result are those elements of the 3 X 3 array
which occur in the row and column containing the
zero element.

The proof is obvious from Egs. (2. 7), (2. 8), and Pro-
position 1.

Let us obtain one more general property of the func-
tion G,.

Lemma 5: Assume that g — &, is a nonnegative
integer. Then G, has the factor

oG
a—&/)\g—¢& /)’
where (ij%) is a positive permutation of (123).

Proof: Assume this property is true for G 4.
Then the recursion formula (2. 2a) shows that the
property is then true for G,. Since this property can
be verified to be true for G,, it is therefore true in
general,

D. The zeroes of Gq

The general properties of the function G, which have
been demonstrated above, are the tools by which we
will seek to understand more of the nature of the
function. Since this function is now known to be a
polynomial (Proposition 2), it is natural to inquire
about the set of points {(x;,¥,,%3)} on which the
polynomial has the value zero. The significant result
which is required to understand the zeroes of Gq(i;';x)
is

Lemma 6: Let £ —x, and §; — x5 be nonnegative
integers. Then G,(£; x) has the value zero for all
such integers satisfying (5 —x,) + (§; —x,) =g — 1,

Proof: Assume the property is true for G __;.
Then the recursion relation shows the property to be
true for G,. Since the property can be verified to be
true for G,, it is true in general.

The set of points defined in Lemma 6 is just the set

of lattice points lying on the boundary of, and interior
to, an equilateral triangle in the Mdbius plane. The
vertices of the triangle are located at the points

(§3’ gl, - gl - &3)7 (§3’ ‘E]_ —q + 19 - §3 - 51 + q_l)’
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and (§3 —q + 1,&;, — & — &3 + ¢ — 1). Thus, the
triangle has g lattice points on each of its sides and
contains g{g + 1)/2 lattice points in all (if one vertex
point is taken as the origin, then by lattice points of
the triangle we mean the set of points on the boun-
dary of, and interior to, the triangle which have inte-
gral coordinates).

If we now consider the positive permutations of a
point (x;,x,,x3) together with the central symmetry
of Lemma 3, we obtain six lriangles in the Mobius
plane, the lattice points of which are zeroes of the
polynomial function G, (£;x). If we suppress the x; =
— %1 — % coordinate, then the polynomial G (¢ ;x)
has value zero on the following set of points Z:

Z ={(t5 —ay, & —by), (— £y + ay, — E3 + b)),
(&1 + &s—q+ 1+a3,—-£3+b3),
(CI—l—‘El~ 52- a4,§1——b4),
(— &y +as, & +E,—qg+1+by),
(3 —ag,q —1— &5 — £3 — bg): (a;,b)
are nonnegative integers such that a; + b;
=q—1and (§,§,%,) is an arbitrary, but fixed
point of R3}. (2.9)
For a fixed point ¢ € R3, there are, in general,
3¢g(g + 1) distinct points in the set Z.

We are now in a position to assert a most remark-
able result:

Proposition 3: The set Z,on which G (£ ;x) vani-
shes, uniquely determines G ,(£;x) up to 2 multiplica-
tive factor which depends at most on £.

Proof: Let us suppress the £ dependence and
write simply

f(xyy) = Gq(g;xuvy _x_y)'

Then f(x,y) is a polynomial of degree 2¢ (Proposi-
tion 2) having the form

fle,y) = SZ? ag,xsyt. (2. 10)
s+t=2g
Since f(x,y) vanishes on the set Z, we have
ZE a,xsyt =0, each (x,y) €Z. (2.11)
s

stt=<2gq

These equations comprise a system of 3g(g + 1)
homogeneous algebraic equations in the (g + 1)(2¢ +1)
unknown coefficients {ast}. Let M = (xsy?) denote the
matrix in which the columns are enumerated by the
(g + 1)(2¢ + 1) values which s and { may assume and
in which the 39(g + 1) rows are enumerated by the
points (x,y) € Z (one row for each point). The system
of equations (2.11) can now be written as
MA =0, (2.12)
where A is the column matrix of (g + 1)(27 + 1) rows
having the {a,} as elements. Then the necessary
and sufficient condition that Eq. (2. 12) has exactly
one linearly independent solution is
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rank M =q(2q + 3), (2.13)

where this condition is to hold for generic points &.

Subsequently, we will give explicitly a polynomial of
degree 29 which vanishes on the set Z for each & €
R3, The existence of such a solution implies

rank M =¢q{2g9 + 3) for each &< R3, (2.14)
A direct demonstration of property (2. 13) is quite
difficult. It is, however, sufficient to demonstrate that
rank M =q(2q9 + 3) for

&, =0 and generic

£, and &5, (2.15)

The proof of this restricted result establishes, in
fact, the general result by the argument as follows: If
Eq. (2. 15) is valid for generic £,, &5, then also Eq.

(2. 13) is valid for generic £, &,, £3, since the rank of
M can at mos! be decreased by setting £, = 0,1i.e.,
rank M = ¢(2¢ + 3) for £; = 0 implies rank M =

q(2g + 3),generally. [The fact that there may exist
certain points £ € R3 for which rank M < g(2g +3) is
of no importance—we need only demonstrate that
there exists a determinant of M of order ¢(2g + 3)
which is not identically zero in £.]

The proof of Eq. (2. 15) will be given by a direct de-
monstration that

Foe, ) = ategty) : (" . )

(2.16)

is the unique polynomial of degree 2g which vanishes
on the set of points

z'=2Z for & =0. (2.17)

For this purpose, we introduce certain subsets Z}, C
Z'fork=1,2,...,9/20r (@ + 1)/2. Z} contains the
points as follows:
@), (.5 —a, —k+1),ay =k — 1 k,...,q—k,
(q-l—gz—a4,—k+ 1)5a4=0’1"‘
B): (— &5 +ay, — &5 +E—1),
a,=k—1k,...,9q—F,
(3—g+1+az, —E+k—1),
az =0,1,...

,q —k;

(€)p: (— &y +Rk—1,— &5 +b,),
by =k, E+1,...
(& +k—1,8,—q+1+by),
b5=0,1,...,9 -k
(@, (3—k+1,—-b)),b;=kk+1,...,9—k,
(65 —k + 1,4 — 1— &, — £ — by),
bg=0,1,...,9 — k.

[For £ = (g + 1)/2 (g odd), we do not require (c) and
d).]
First consider Z{. Since f(x,y) is a polynomial of

degree 2q which vanishes on the 2¢ distinct points of
(a),, it follows that

1989

£5,0) = a(tyts) (52; x) <g3 - ") .

Observe that it also now follows that

fx,0)=0, each(x,y)e Z".

We next write

f(x7y) =f(x;0) - ygzq-]_(xyy)9

where g5, (x,y) is a polynomial of at most degree

29 1. g, q_l(x,y) vanishes on the 2¢g distinct points
(b), of Z;. Therefore, g, _,(x, — §;) vanishes identi-
cally in x,and g, ;.4 (, ¥) must have the form
824-1(%,9) = (3 + ¥)g24-2(x,y), Where g5, o (x,y) is 2
polynomial of degree at most 2¢g — 2. It vanishes on
the 2¢ — 1 distinct points (¢}, of Z{. Therefore,
824-2(2,) vanishes identically in y,and g5, »(%,)
must have the form g,, 5(x,9) = (¢, + x)g, q_a(x,y),
where g5, 3(x,) is of degree at most 2¢—3. It vani-
shes on the 2¢ — 1 distinct points (d); of Z{. There-
fore, g5,.3(&,y) vanishes identically in y, and
824-30,¥) = (§5 — X)82-4(%,¥), Where g, ., (x,y) is
at most of degree 29 — 4. Thus, the conclusion at the
end of step 1 of our proof is that f(x,y) has the form

flx,y) = flx,0)
+ (= )5 + 9)(Ey + x)(E3 — X)g 5 4-a(x, 9).

We continue this procedure to step 2,...,step %,...,
where we assert that the conclusion at the end of step
k (in which the points of Z ‘, are considered) is

flx,y) =fx,0)

=¥\ /is Ty (Ez+x><g3_x> \ 10
+(k >< k > kb 2 gzq-‘lk(x!y); (2.18)

where g3 ,.4, is of degree at most 29 — 4k.

The proof of Eq. (2. 18) is by induction on k. Thus, we
assume the validity of Eq. (2. 18) for 2 > 2 — 1 and
consider the implications of the vanishing of f(x,y)
on the points of Z’,. Considering the points (a), of

h» we see that g, _4,.,,(¢, — & + 1), which is a poly-
nomial of degree at most 29 — 4% + 4 in x, vanishes
on the 29 — 3% + 3> 29 — 4k + 4(k > 1) distinct
points of (a),. Therefore, g5, 4,.4(, — % + 1) vani-
shes identically in x,and g5, ,.+4(x,y) must have the
form

8ag-a1+40,9) = (—y —k + 1)85, 4 ,.3(%,9).

Similarly, we conclude, in turn, from the vanishings
on the points (b),, (¢),,and (d), of Z’, the results

g2q—4k+3(x,y) = (53 +y—k+ 1)g24_4k+2(x,y),
gzq-4k+2(x:y) = (52 tx—k+ l)gzq-4k+1(x,y)y
8ag-ar+1W,¥) = (B3 —x —k + 1)85,.4,(x,9).
The linear factors arising from step % are precisely
the factors required to carry Eq. (2.18) for 2 - 2 — 1

into the same form for k. Since the form (2. 18) is
true for 2 = 1,it is true generally.

For the final step, we proceed as follows. We choose
k = q/2 for q even and select any point (x,y) € Z’
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such that the factors preceding g, = constant in Eq.
(2. 18) are nonvanishing,e.g., (x,y) = (§5 —q + 1,
q—1—£&,— &3). The vamshmg of f(x,y) on this
point then requires g, = 0,i.e.,f(x,y) = f(x,0) for ¢
even. Similarly, for ¢ odd, we choose £ = (g — 1)/2 in
Eq. (2. 18) and note that the polynomial g, (x,y) of de-
gree at most two must vanish on the points (a) (4.1)/2
and (b) (gs1y/2 Of Z (q+1)/2 These vanishmgs require
that g,(6,9) = [— ¥ — 2(@ — D][&5 + vy — 3@ — 1)]go-
Finally, we select the point (x,v)e zZ’ above to show
that g, = 0,1i.e., f{x,y) = f(x,0) for g odd.

We have now completed the proof of the result: f(x,y)
= flx,0) given by Eq. (2. 18) is the unique polynomial
of degree 2q which vanishes on the set Z'. Proposi-
tion 3 now also follows.

E. The proof of Gglt: x) = Ggl¢; x)

Let us now turn to the proof of one of the principal
results of this section. Namely, that the unique solu-
tion to the recursion relations (2. 2) is the conjec-
tured form given in I. We rewrite this conjectured
form in terms of the polynomials in three variables
x,y,and z defined as follows:

foryz) = (@—7)t7r! <q i r)(i)(i)

Note that this function is invariant under the inter-
change of y and z. The conjectured solution may now
be written in the form

(2.19)

Gilg;x) = (—1)9q1 2
()

X fan, (81, 82 + %1, 83— %1)

X fa.r,(Eas E3 T X9, &1 — %)
X far,(b3) 81+ %3, 82 — %3), (2. 20)

§1+§2+£3‘k1”‘k2—k3>
( 5

where the sum is over all nonnegative integers %, k5,
kg, k, whichaddtog: ky + kg + kg + by =4q.

The following result is immediately evident.
Lemma 7: GS(&;x) obeys the symmetries stated
in Lemmas 1 ané

fIt is, however, far from obvious that the symmetry of
Lemma 2 is obeyed (It is, nonetheless, true). Indeed,a
direct proof of this would be quite difficult. ]

Observing that

Y\ /2
fq,r(oyyaz) = 6q,yq'<q)<q>’ (221)

we obtain from Eq. (2. 20) the result
GS(£1£50;%) = G (£, 4,0;%) (2. 22)

[cf. Eq. (2. Ta)]. However, because the symmetry of
Lemma 2 is not manifest in the form (2. 20), neither
is the property (2. 8). This property is, however,
correct as will soon be proved.

We digress for a moment to establish two important
properties of the polynomials (2. 19):
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o <x+y+z—n—'r

)fq,y(x,y,Z)

r=0 q—n—7r
=foqn®x+y—n,x+z—n) (2.23a)
forn =0,1,...,q;
q
TZ:)O Far®9,2)fy gy, x +y +w—7,2—7)
= faq.4® +¥,x +w,z) (2.23b)

for arbitrary variables x,y, z, w.

Relation (2. 23a) is simply a polynomial interpreta-
tion of Saalschiitz's formula.> Relation (2. 23b) fol-
lows easily from Eq. (2. 23a) upon noting that the pro-
duct under the summation can be written as

Z\/xt+ty+tw—vr
q'( >( )fq,r(x’y9w)’
q q—vr

using
2\ /2 — 7 <q><z>
<r><q~—r> \r/\g/’
Now let us return to our objective: the proof that G,
= GC Relation (2. 23a) may be used to carry out one
of the summations in Eq. (2. 20); one obtains three
equivalent results, depending on which summation &;

one elects to eliminate. Thus, combining the binomial
factor with f oy and using relation (2. 23a) leads to

(— 1)q! (Zk%fq'kl(glgg + x4, 53 — %)

X fo.r,\E2, &3 T X2, &1 — %)

qu,k3(£3,£1 t 3 tx3—q +k;,
£, + ‘53— 3*q+k3),

Ge(E;x) =

(2. 24)

in which the sum is now over all nonnegative integers
(k) = (kykyks) which sum to ¢q. Observe that we lose
“obvious symmetries” in making this reduction.
These symmetries are, of course, contained in the
equalities of the forms obtained by reducing Eq.

(2. 20) in the three possible ways.

Particularizing the result, Eq. (2. 24), to the case x; =
&4, using the property
3\
Sar, (81,82 + £3,0) =08, 4! 7))
and relation (2. 23b), we obtain
)
GelE; bayx, — b3 — %) = (— 1)2(g1)2 (q)

X fag.qlba + &3+ X, 65 + &5, 8 —X)

=G, (&; &3,x, — £3 — x). (2. 25)

From Lemma 7 and Egs. (2. 22) and (2. 25), we have
proved:

Lemma 8: G¢ (é x) obeys the result given by
Lemma 4 namely, when one of the nine entries in the
3 X 3 array

£y E3—x1 & tx
Ey &1 —xy 3t X,
£y &y —x3 & txg
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is zero, G§ assumes the form given in Lemma 4.

Lemmas 7 and 8 indicate, but do not prove, that G

and G¢ are identical. Indeed, we have not yet estab-
lished the full symmetry of Proposition 1 for G§. The
essential lemma which is required to accomplish
this fully is the following.

Lemma 9: Gg(& ;%) has the value zero on the set

Z given by Eq. (2. 9).

Proof: In consequence of the symmetries given
by Lemma 7, it is sufficient to prove that G;(g ;X)
obeys Lemma 6. Consider the factors

(53‘9‘1)(51““"2)(" 51—53—9‘3""1"1) (2. 26)
ky ko kg

arising under the summation in Eq. (2. 24).

It follows that for nonnegative integers £5 — x; and
£y — x, satisfying ({3 —x,) + (£ —x5)=q—1,we
also have that — £; — &3 —x3 + g —1=— (& —x,)
— (¢5 —x;) + ¢ — 1 is a nonnegative integer less
than or equal to g — 1. Hence, at least one of the fac-
tors in (2. 26) vanishes unless &y = &5 — %, kg =

£ —xy,and kg = — {4 — &3 —x3 +q— 1. But this
implies 2y + k, + k5 = ¢ — 1, which violates 2; + %,
+ kg = ¢ in the summation in Eq. (2. 24). Thus, in the
form (2.24), G5(£;x) vanishes {ermwise, and Lemma
9 is proved.

We are now able to state a principal result:

Proposition 4: The polynomials G ,(§;x) and
G¢(&; %) are identically equal.

Proof: Using Lemma 9 and Proposition 3, we
must have

G (;%) = a(8) G5 (&%),
Setting x; = &4 and using Eq. (2. 25), we find a(t) =1.

Covollary: Gg(f;' ; x) obeys Proposition 1.

Using only the symmetries of the polynomial G ,(§;x)
and its zeroes, we have been able to demonstrate that
the solution to the recursion relations (2, 2) is uni-
quely given by GS(£;x).

We still have made no use of Lemma 5. The signifi-
cance of this lemma will become clear in the deter-
mination of the null space of the Wigner operator
(l"s). We now turn to the general discussion of the
null spaces of the U(3) Wigner operators.

3. NULL SPACES OF THE U(3) WIGNER
OPERATORS

A careful development of the concept of the null
space of a Wigner operator is essential to the pre-
sent work since one of our goals is to understand
fully the vanishings of a Wigner coefficient. Before
entering into this discussion, we require detailed
knowledge of two numbers: the multiplicity I of a
prescribed A pattern belonging to a set of irrep
labels [M] = [M,3M,,M54] and the intertwining
number 9 which is the number of occurrences of an
irrep [m’] in the direct product [M]® [m].

A. The multiplicity of a A pattern
We first consider the determination of the number

m.® The A pattern of the U(3) Wigner operator speci-
fied by the operator pattern

My3 Mz Mg

iz Ty (3.1
Iy
is by definition the triplet of integers [A] =
[A14,45], where
8 =Ty By =T+ Ty — Ty 3.2)

Ag = Mg + Myg + Mzg — Ty — Ty

Thus, for a given operator pattern, one simply reads
off the corresponding A pattern. Letting I'y,, ',
and 'y, run over the set of all integers which satisfy
the “betweenness” conditions (the irrep labels [M]
being specified), we then obtain the set of A patterns
belonging to irrep [M]. Clearly,those operator pat-
terns having the same value of I';, + I';, correspond
to the same A pattern.

The inverse problem is: (a) Determine when a speci-

fied triplet of numbers [A;1A,4,] is the A pattern be-

longing to irrep [M], and (b) determine which operator
patterns having irrep labels [M] correspond to this

A pattern.

The solution to part (a) of the inverse problem is
easily given: The necessary and sufficient conditions
that [A{DyA5] be the A pattern belonging to irvep [M]
are: Ay + Ay + Ay = Myq + Mgy + Mgy and M3 =
A; = Mgg for each i =1,2,3.

The solution to part (b) of the inverse problem can be
solved by direct enumeration. Thus, if [A] is a speci-
fied A pattern belonging to [M], then the set of opera-
tor patterns (3. 1) which corresponds to this A pattern
is obtained by setting I';; = A; and enumerating all
values of 'y, and 'y, suchthat I';, + 'y, = Ay +
Ay, and such that the betweenness conditions are not
violated.

The counting problem described above gives rise to
eight distinct cases corresponding to the eight pos-
sible ways of distributing the three integers A, Ay,
A4 into the two closed (disjoint) intervals S; =
[My3,M 3] and Sy = [Mg5,My4 — 1), where S, is de-
fined to be empty for M,; = M35, The eight solutions
to the eight counting problems are conveniently given
by determining the largest and smallest values of
I'y» which can occur for the specified A pattern.
Thus, if we define

[{p(A148,45) = Ty, (max), Tfa(A1A,4,) = 'y, (min),

(3.3)
then, the multiplicity 91U can be verified directly to be

M =T3,(8;8,8,) — T5,(A8,4,) + 1. (3.4)
The eight possible cases are given in Table I below.

B. The intertwining number

The determination of the inteviwining number 9 may
be accomplished by various methods (e.g., Little-

J. Math, Phys,, Vol. 13, No. 12, December 1972
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TABLE 1. The multiplicity of a A pattern. [M;;M, ;M;,} denotes

an arbitrary set of irrep labels. [{A;A,A;] denotes any specified
triplet of integers satisfying A; + A, + A3 = M3 + My 4 + My, and
either A; € S; = [M,3, M, 5] or A, C Sy = [My3,M, 5 — 1]. Depend-
ing on the eight possible distributions of A,,A,, A, into the two in-
tervals $; and S, given in columns 1-3, there is defined a set of
operator patterns having irrep labels {M, 3 M, My ;] and A pattern
[A{Ag445]. The values of T';, which occur in these operator patterns
range from the largest value given in column 4 to the smallest value
given in column 5. The total number of operator patterns having
irrep labels [M, ; M, ;Mg4] and the specified A pattern is the multi-
plicity 9N given in column 6.

A; Ay Az T7,(8,8,49) Tia(8,8,85) 00

S, S, S, A +Ay—Myy A+ Ay —Myy My —My +1
Sz Sz S, M3 M3 Mg —M3 +1
S, S, S, My, A, Myg— o, +1

S, S, S, AL+ Ay Mgy Ay Ay — Mgy + 1

S, S, S, My, A, Mys— g +1

Sy S S, Ayt by Mgy 4, By — Mz + 1

S; Sz Si At By My, My3 Mz — a5+ 1

S, S S5, M, 4 Ay + Ay — My Oz3— My +1

wood's tableau methods?), but we choose to use the
method of reducing direct products described in de-
tail in Refs. 8 and 9, since the technique is again just
a counting problem on Gel'fand patterns. The count-
ing is, however, highly redundant. Nonetheless, a
careful analysis of the procedure allows one to de-
duce the following much simpler statement: the in-
tevtwining number 9 belonging to our triple mMm’,
i.e., the multiplicity of [m] + [A] in [M] ® [m], where
[A]is a A pattern belonging to [M] is given by

§=Myg3 +Myzy +Mgyp —Myy3 =Mygy — ‘.)Tl(33215,)
where M, is lhe mulliplicity of the A patlern

[bia + Ay bj3 + Bjybps + 8, — [P13D23P33]  (3.6)

belonging to [M].

In the A pattern (3. 6),the p;; are the partial hooks
defined by p;3 = m;3 + 3 — 4,7 = 1,2, 3; furthermore,
M, ts defined lo be zevo whenever the triplet of
integers (3.6) fails to be a A pattern belonging to [M].

Equation (3. 5) is a rather remarkable formula in that
it expresses the intertwining number J directly in
terms of the multiplicity of six A patterns belonging
to the same irrep labels [M].10 Observe that M 44
is just 9 of Table I;but the remaining M ;;, depend
on the labels [m].

Equation (3. 5) is a very useful form for determining
the components [m’] which appear in the reduction of
[M] ® [m] for specific numerical assignments of [M]
and [m]. It may also be used to determine complete-
ly the intertwining number 9 as a function 9([M], [m],
{A]) of [M],[m] and [A]. The procedure for accom-
plishing this is described in the following paragraphs.
Consider the determination of M 4,4, This number is
the multiplicity of [A, — %15, &; + X5, Ag] in [M];
equivalently, it is the multiplicity of [A; + x5, Ay —
%19, Ag]in [M], where [A;A,A4] is a specified A pat-
tern of [M] having the multiplicity
M ygq =M (3.7)
appearing in Table I. Suppose (A;A5A3) € (§:5,5,)
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(line 1 of Table I). Then we can have either (A +
X1, 85 —X15,83) € (815:S;) or (A; + xy,, Ay — x40,
A3) € (§,5,51). Referring to Table I again, we find

Ma13

0
S‘mlzs for x3, = x,, = 1 — 4y,

where for brevity the following notations have been
introduced:

for B; — Ay < xyp = 0y — Ay,

0 for x;, > ay — Aq, (3.8)

a; = T7,(818,45), ;= Tiy(A;48,45),

x9, = max(1, A, — A; + 1), (3.9)
We next progress through Table I, considering for
each distribution of (A;A,A3) into Sy and S, all poss-
ible distributions of (A + %14, A5 — %15, A3) into S,
and S,. (Certain cases violate the lexical conditions
%19 = %35 and may be discarded.) The result is:
Equation (3. 8) obtains in each inslance, i.e., when the
vestviclions on xy, are expressed in teyms of the
numbervs oy and B, (the numbers appearing in Table
1), then My, 5 assumes the single form for any distri-
bution of (AjAy4A3) into S, and S,.

Recognizing that 9, 5, is the multiplicity of [A, +
X9z, B3 — Xgg,A1]in [ZM], we obtain the following
equation for 9, ,, from Eq. (3. 8) by letting [A;4,4,]
= [Az838 ] and x5 = x5t
Mi32

My 93 fOr %95 <x55 = By — Ay,

(g — Ay + 1) — x93

for By — Ay <xp3 =y — Ay,

0 for x5 > @y — Ay, (3.10)
where
ay = Tiy(A34341), By = Tiy(Az48344),
x93 = max(l, A5 — A, + 1) (3.11)

Similarly, we obtain
M321
Mg for x93 =x15 = B3 — Ay,
(@g— A +1)—x4,
for By — Ay <xy3 Saz— A,

0forxyz > oy — Ay, (3.12)
where

ag = T'i,(81834;), B3 = T'iy(8;434,),

x93 = 295 + 283 = max(2, 43 — 4, +2).  (3.13)

One should be very careful to note that while certain
permutations on [A;A,A5] have been utilized in ob-
taining Eqgs. (3. 10) and (3. 12), all three sets of formu-
las, Egs. (3. 8), (3. 10) and (3. 12), refer to a common
specified [A] = [A{A3Az]. In forming the sum — M 5q 3
— My 35 — Myq1, for example, there are eight distinct
results corresponding to the eight distributions of
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[A14,A4] into S; and S,. The most direct way to form
these sums would be to write out two more tables
from Table I (one for [A;AyA5] —~ [AyA34; ] and one
for [A;AyA5] = [A1A3A,]) in which one then re-
arranges the first three columns to the order A;, A,,
A4 followed by a rearrangement of rows of the full
table such that the first three columns of all three
tables agree. The rows of columns four and five of
the three tables then list, respectively, the values
ayBq,058,,and a 4B, which are relevant to forming
the sum — My 3 — My 35, — 5!‘6321 for each specified
[A,4,45]. (The last column is, of course, the same in
all three tables,i.e., M55 =W = @y — 51 +1=a,
— By + 1 =az— B3 +1). Actually, it is not necessary
to form directly the aforementioned sum;but the fact
that one must refer the various 9 ;;, to a common
[a]=[aj4a,4,] before combining must be carefully
observed.

The determination of 9,5, proceeds along similar
11nes sm231 1s the multiplicity of [A; + x15,4, —

}in [M]. By examining all distributions
of AlAz J into Sy and S, and all corresponding dis-
tributions of [Ay + X145, Ay — X715, A3 — Xy3]into S
and S, whlch do not violate the lexical conditions
X192 %05, %53 = 533,415 = %93, we have been able to
derive the required explicit formulas. In order to
give a concise description of the results, let us refer
to the following restrictions on x,,,%,3,and x;5 as
conditions I and II, respectively.

The following restrictions hold simultaneously:

x93 Sx1g (o —Ag) + (By — Ay),

xJp X35 Sap — 4y, @
0

X33 = Xp3 = 0y — Ay

At least one of the following restrictions holds:

X132 @y — Ay, Xy3 > Ay — Ay,

%13 > (0 — Ay) + (By — Ay). )
Then
M4,y for 4, €85,
Magy = {
0 for A, € S, and conditions II. (3. 14)

My =—Myps + My 5 +My,, for A, €8, and
conditions I. (3. 15)
A similar procedure yields
M3y for Ay, € 84,
M3y = { (3.16)
0 for A, € S, and conditions II,

Mayp =—Myyg +Myy3 +Mygp

conditions I.

for A, € §, and
(3.17)
Equations (3. 15) and (3. 17) can be replaced by the
single relation

Mygg + Myzy + M3z =My13 +Myzp + Mgy

for conditions I, (3.18)

since for A, € S, it reduces to Eq. (3. 15), and for
A, € S, it reduces to Eq. (3. 17).

1993

The five relations, Egs. (3. 8), (3. 10), (3. 14), (3. 186),
and (3. 18), yield the complete determination of the
intertwining number 9 of Eq. (3. 5). (The explicit
form of M ,,, given by Eq. (3. 12) never enters into
the calculation of 9—it is always canceled by the

M 451 Piece of My, or My, ,.) For example, consi-
der xy5 > @y — Ay and x,3 > @, — A,, Then M,
=0, Mygp =0; Myyy =0for 4, € Sl,‘m%l =
IMypy for A, € Sz’mslz = M3y for 8y € 5,; Mgy,
=0 for A, € §,. Thus,

§=Mygg + Mgy ~M3g; =My55 for
§=Mygg +Mygy — Mgy =M,yy5 for

8y € sl’
Ay €8,,
that is, 9§ = M, ,4. Continuing in this manner, we

obtain the following explicit set of values of the
intertwining number J:

9 =Mygq for x5 > 0y — Ay, X553 > @y — A,y (3.192)

9 =Myp3 —[(ay ~ Ay + 1) —xy,]
for By — 8 <xyp, = a; — Aj, Xg5> ay— Ay;
(3. 19p)
§ =My — [(@
for x,5,> ay —

g — B8y + 1) —xy5]
Ay, By — Ay <Xy3 = ay— Ay;
(3.19¢)

9=Mygg — [(ay — Ay + 1) + (@g— 85 + 1) — x13]
forx1p = @y — Aq, %33 = @y — Ay,
%13 = (81— 4y +1)
+ (0[2 — A2 + 1)
=(a; —A; + 1)+ (By— A, +1); (3.194d)

9 = 0 if at least one of the following conditions
obtains:

(a) X19 = By — By, (b) Xg3 = By — By,
(C) x13 = (Bl — Al + 1) + (az - Az)

=(aw; —Ay) + (B — Ay +1). (3.19)
All 9 = 0 cases are included in the last equation (for
lexical labels [m] and [m] + [A]).

In obtaining the last two results above, one must take
careful note of the implications of the conditions:

For example, x5 = 0y — &1, X33 < 0y — Ay, X153 =
(@y — Ay + 1)+ (B, — A, + 1) imply, in fact, that
Br— 8y <xyp Sy — 4y, fy— 4y <x23—°’z—A2,
X132 (0 — A + 1)+ (B, — Ay + 1) The expression
(3.19d) given for g then obtains upon combining Egs.
(3. 8), (3.10), (3. 14), (3. 16), and (3. 18). Note that the
same result would obtain for x,, = (@, — A,) +

(B4 — Aqy + 1), but this gives 9 = 0, and this zero has
been included in the last equation.

To demonstrate that the 9 = 0 equation is correct,
one must show that these zeroes are precisely the
ones which obtain from Egs. (3. 8), (3. 10), (3. 14),
(3.16),and (3. 18). All possible nonzero values of 9
(for lexical labels [m,] and [m] + [A]) are already
given by the first four relations of Eqgs. (3. 19). This
implies that we can only get the value zero for 9 (for
lexical labels) if at least one of the conditions x,, <
Br— Ay, X553 =By — Ay, X33 = (@ —48y) + (B, —

A, + 1) obtains (since all other possibilities are con-
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tained in the first four relations). From Egs. (3. 8)
and (3. 10), respectively, we obtain 9 = 0 for either
X12 = B1 — Ay, X3 > @y — Ay OT Xy > Oy — Ay,
X953 = By — Ay. Furthermore, all other possible
zeroes are now subsumed under the single condition
¥153 = (@) — A) + (B, — A, + 1). We have already
noted that 9 = 0 for x;53 = (@, — Ay) + (By — Ay + 1).
For xy5 = (@ — A+ (By—4y) = By — A+

(a4 — Ay), we have the following possibilities: x;,>
@y — Ay, X3 < By — Agy #13 < By — Ay, Xp3> Ay
— Ag; X195 =01 — Ay, X953 = &y — A,. But each of
these possibilities yields § = 0. The conclusion is

g = 0 if and only if at least one of the conditions
stated in Eq. (3. 19¢) holds.

We need to note one final property of 9 before Egs.
(3.19) are complete: If any condition on the x;; for a
particular branch of 9 fails to be satisfied in conse-
quence of imposing the lexical conditions x;; = x5,
then 9 has value zero on that branch.

C. The intertwining number-null space diagram

The derivation of the algebraic expressions (3.19)
for the intertwining number has been quite detailed
and intricate. It is therefore quite satisfying to
observe that the results expressed by Egs. (3. 19)
assume a very elegant form when represented geo-
metrically in the M6bius plane: Each point in the
plane having integral coordinates
has associated with it an intertwining number. The
three points

X2

By,

-4

e

R
|
g=0 I=k

FIG.1. The intertwining number-null space diagram. The inter-
twining number g is defined at each lattice point (points having inte-
gral coordinates) of the Mobius plane. At each lattice point in the
cross-hatched region I, including the bent solid line, the value of d
is 9M; at each lattice point in the shaded region II, including the bent
solid line, the value of 4 is zero;at each lattice point in the region
III between the two bent solid lines, the value of 9is 1,2,..., 9N — 1,
its value being k at the lattice points on the bent dash-dot line
designated by 9 = k.
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Py=(a,— Ay +1, —a; —a, +4;, +A,—2,
a; — Ay + 1),
Py,=(a,—08,+1, —a,—B; + 4, +4,—1

’

Bl_Al)y
Py =By — 8y, —a; — By + A +48,—1,
@y — A, + 1) (3.21)

define the vertices of an equilateral triangle (ses
Fig.1). This triangle defines a partitioning of the
plane into three disjoint sets:

I. The set of lattice points on the solid line de-
signated by 9 = 9 in Fig. 1 and all lattice
points in the pie-shaped region for which the
line 9 = M is the boundary (the cross-
hatched region).

II. The set of lattice points on the solid line
designated by 9 = 0 in Fig. 1 and all lattice
points in the shaded region.

III. The set of lattice points lying between the

solid lines 9 = 0 and 9 = 9N of Fig. 1.

On the set I, the intertwining number has value 9;
on the set II, it has value zero; and on the set II1, it
has a value which ranges from 1 to 9 — 1, its value
being £(1 = 2 =M — 1) on those lattice points joined
by the dash-dot line designated by 9 = % in Fig. 1.

We propose to call this diagram the Intertwining
Number-Null Space Diagram. This dual nature of the
diagram is discussed in detail subsequently.

The Intertwining Number-Null Space Diagram assigns
an intertwining number to each point of the Mobius
plane. However, only a portion of the diagram corres-
ponds to the actual problem of determining the num-
ber of times [m] + [A] occurs in the reduction of

[M] ® [m], since, by definition, 9 is zero whenever

[m] + [A]is nonlexical, i.e., fails to satisfy mi3 + Ay
= Mgq + Ay = Mgz + Az. The lexical conditions are

x1 =59, X, =—x9y, x5 =20, (3. 22)
where the numbers x) are defined by Egs. (3. 9),

(3.11), and (3. 13), respectively. We call the point

Py = 63, — 53,332) 3. 23)

the lexical point of the diagram. The lexical region
of the diagram is then the set of lattice points which
satisfy the lexical conditions (3. 22).

The lexical point P, can be one of six possible points
depending on [A]: It is (1, — 2,1) for A; = Ay = Ag;

(1, — Ay + A; — 2,8, — Ay + 1) for Ay = Az = Ay
(Ag = By + 1, — Ag + 8, —2,1) for Ay = A} = Ay;
(1, — Ay + Ay — 2,4, — Ay + 1) for Ay = Ay = Ag;
(A — Ay + 1, — Ay + Ay —2,1) for A3 = Az = Ay

or (Ag — By + 1,A) — Ay — 2,8, — Ay + 1) for
Ag = AzzAl.

For example, the lexical point for the Intertwining
Number-Null Space Diagram for [m] + [g ¢ 4] con-
tained in [29 ¢ 0] ® [m]is (1, — 2,1). The points
P,, P,, P; become, respectively,

P1:(q+1,——2q—2,q+1),
P2:(q+19_q'_1,0)1
Py=0,—g—1,q+1)
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TABLE II. Coordinate points of the intertwining number-null space
diagram.

Ay Ay, Az Oy AL+ By — Ay Qy;— A +1 By — Bg
S S; Sy Ay, Mg +1 Ay ~Mys Ag— Myz + 1 Ay — My
Se Sy Sy Myz— Ay +1 Moz — A Myg3— Ay + 1 Mys — Ay
S, S, Sy, Mg—a, +1 0 Ay~ My +1 My,— A,
52 S] 51 A, ‘-M33 +1 Ay — By 1’”13 — A, +1 A3v11123
S, S, Sy Myg—a,+1  Ay— A, Mz—A,+1 0

S, S, S, By—Mg+1 0 Ag—Myy +1 Ay Ay
S, Sy Sl A, M33+1 Mys— By 1‘”13—A2+1 Ag— Ay
S, S, Sy Mg—A,+1  Ay—Myy Ay— Mg +1 0

Thus, in the lexical region of the diagram, we have
9= 0whenever —¢q —1=x, = —2,

Since the four numbers a; — A; + 1, By — Ay,
0s—A,+1,and §,— A, play a crucial role in the In-
tertwining Number-Null Space Diagram, it is con-
venient to give the explicit tabulation of them in
Table II (these results are read off directly from
Table I).

D. Determination of the null spaces from the
properties of the intertwining number

Let us now discuss the dual nature of the Intertwining
Number-Null Space Diagram, i.e., we wish to justify
the appellation “null space.”

Consider the set of 9L Wigner operators of irrep
labels [M] which belong to the multiplicity set having
a prescribed A pattern [A]. The operators in this set

are enumerated by operator patterns of the type (3. 1).

Let us denote these N operator patterns by (I';),
(Ty), ..., (T &), making, however, no specific assign-
ment of the (I',) to the patterns. Thus, the set of
Wigner operators under consideration is
(Ty)
[M] ): [A(T,)] =[] (3.24)

More generally, we do not even consider the (T,) to
be operator patterns, but rather only symbols which
enumerate a set of ovthogonal unit tensov opevators,
each of which effects the mapping [m] — [m] + [A] of
a generic irrep space [m].

The coefficients
()
[m] + [A] [m]
[M]
(m") (m)
(m)

are then the coupling coefficients such that the vec-
tors defined by (cf. Ref. 9)

l([MJ + [a] >
) ; (D)
(m’)
(')

_ 5 ([m]+[A]> 0] ([m]>
@), (m) m’) (m)

(M)

(3.25)

1995

([M]) ([m]>
(M) (m)
2 1 (3. 26)

have the following properties: For a specified k,

1= k=N, either the coupled vectors are ovthornormal
inthe labels (m’), in which case the vectors are abasis
of a carrier space of irrep [m] + [A] of U(3), or each
vector corresponding to any Gel'fand pattern (m') is
the zero vector. Furthermore, the carrier spaces
corresponding to distinct values of 2 are perpendicu-
lar.

Consider next the implications of the Intertwining
Number-Null Space Diagram. If the labels [m2] belong
to the region R of the Mbius planel! for which 9 =
I, then Eq. (3. 26) must provide us with precisely M
perpendicular carrier spaces of irrep [m] + [A), i.e.,
one for each k.

This implies that
(T,)
[M] =0,
(M)

for all (M), (m). This is just the statement that there
exists 9N Wigner operators.8 But now consider the
set L, of irrep labels {[m]} such that (x,5,%5;,%;,)
is a point on the line for which § = 9 — 1. Then pre-
cisely one Wigner operator, call it (I';), must have
the property

X2

_

FIG.2. The null space of the U(3) Wigner operator (I',). Lattice
points on the bent solid line § = M — k and exterior to the shaded
region define the set of irrep labels {[m]} which belong to the null
space J, of the Wigner operator designated by (I",). The exact posi-
tioning of the solid line is determined from Fig.1.

I= -k
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(ry
N i)
M) < >=o, [m] € Ly, (3.28)
(m)
(1)

for all (M) and (m), for otherwise, we would obtains I
perpendicular carrier spaces of irrep [m] + [A ], and
only 9N — 1 such spaces exist. Next, consider the set
L, of irrep labels {[m]} such that (x,5,%51,%;,) i5a
point on the line for which 9 = 9N — 2. Then precise-
ly two Wigner operators must annihilate all irrep
spaces having [m] € L,. These can only be the opera-
tor designated by (I’;) and one more, call it (T',):

(ry)
(]

(] ( ) _o,
(m)

(M)

(ry)

“\| /im]

() ( ) _o,
(m)

(M)

[m]e Ly U L,,
(3.29)

[m] & L2,

for all (M) and (m). We continue in this manner,
designating by (I';) the new Wigner operator which
must annihilate those irrep space [m] € L, where
L, is the set of labels {[m]} such that (x,5,%5;,%;,)
is a point on the line for which 4 =9 — 3,i.e.,

(ry)
([m]

M) ) _o,
(m)

[mle LyuL,VUL,,
[m]€ Ly U Ly,

[m]
[M] ( ) =0, [m]e L,
(m)
(M) (3. 30)

The general conclusion is: Let

N, = NUT,) (3.31)
denote the null space of the Wigner operator designa-
ted by (T',) in the above enumeration. Then the
Moébius plane of the Intertwining Number-Null Space
Diagram is separated into two regions by the line on
which 9 = 9X — &, as shown in Fig. 2. The nesting
property of these null space is obvious:

Ny DTy D-er DNy (3.32)
4. PROOF THAT THE NULL SPACE 9u(rs) IS

MAXIMAL

Sections 2 and 3 have been developed quite indepen-
dently of one another. The aim of this section is to
demonstrate precisely the elegant manner in which
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the zeroes of the denominator function, Eq. (1. 2a), of
Sec. 1 fit into the more general scheme of null spaces
developed in Sec. 3.

This necessary meshing of structures is a conse-
quence of the next proposition. (Throughout this dis-
cussion, we impose the lexical restrictions x; = x5
=1,%, =%3; = — 2,x3 =X, = 1, unless otherwise
noted.

Proposition 5: After all linear factors in x,3,
%X31,%19 are removed from Gq(A;x), the polynomial
which remains vanishes on the lattice points of the
boundary and those interior to the equilateral tri-
angle in the M&bius plane which has vertex points as
follows:

Pl=(a,— Ay, —ay —ay + A + Ay, 00 — Ay),
Py = (09— Ay, —0y— By +A; + 81,8, —4, +1),

Py=(By— A+ 1, —a; —f,+ 4, + Az—l,al—(Al);
4.1

The numbers appearing as the coordinates of the

points P, are obtained from those tabulated in Table

II for [M] = [p q 0]. (The x, coordinates of P} and

P, agree in consequence of the relation oy — a, =

By — By.) Observe that the triangle PyP,P4 of Fig.1

and the triangle P| P4 P} shave the common line Py Py,

but the vremaining two sides of P{ P3P} lie one unit

interior to P1P2P3.

The proof of Proposition 5 is given by using (Lemma
5) the fact that G (A;x) contains the factor

~. /Iine of zeroes

4

X

v

center of
Q. symmetry

X3

F1G.3. Zeroces of the polynomial G4{352;x,x,x;). This polynomial
vanishes at each of the six points (three large open circles and three
large solid circles) of each of the six equilateral triangles symmetri-
cally placed about the center of symmetry at the point (— 3/2,1/2,1).
This set of points is the set Z of Eq.(2.9) (for §, = 3,¢(, = 5,3 = 2).
The linear factors of the polynomial are (x; + 3)(x3 — 5). Hence,the
polynomial also vanishes on the lines x3 = — 3 and x, = 5 (the dash-
dot lines). Removing these linear factors from the polynomial leaves
a new polynomial which still vanishes at each of three points (the
large solid circles) of each of six equilateral triangles which are
still symmetrically placed about the center of symmetry.
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(A1 + x12> (Az —x12>
q— A, 7 — A, (4. 2)
for 0 < A; <gq. [In general, G (&%), for arbitrary £,
does not contain linear factors; but it may (by Lemma
5) when £ is particularized to A. This implies that

G ,(A;x) vanishes not only on the finite set of points
Z of the six triangles of Sec. 2D, but also on infinite
lines which intersect these triangles in a most inter-
esting way (see Fig. 3).] Using the basic result (4. 2),
together with Lemma 1, we will verify Proposition 5
for each of the eight cases listed in Table II. Since
we are restricting our attention to lexical values of
the variables (x1%,%3) = (¥33%31%13), let us note that
of the six general triangles on which G ,(§; ) vani-
shes, the one corresponding to the lexical region of
the Intertwining Number-Null Space Diagram is the
one which has vertices at the points (we now set

gi = Ai)

Qq = (83, — Ay — A3, Ay),
QZZ(AB’—AZ_AS +q——1,
Qs =(Ag—q+1,—A,— Ay +q—

Our procedure is to prove Proposition 5 by verifying
explicitly that when the zeroes of the linear factors
of G q(A;x) are removed from the triangle defined by
the points @,Q,Q 3, we are left, in each of the eight
possible cases, with the triangle defined by the points
P P,P;. We give the proof only for two cases, the
remaining six cases being established in a similar
manner,

(1) (A{A,A5) € 1. From Table II (for [M] =

[p q 0]), we find oy — Al = A2, Bl —A; =A,—q,
a,— Ay = A3,and B — ¢q. There are no
linear factors in G EA "c) and we see that the set of
points (4. 1) becomes the set of points (4. 3).

(2) (A1A5A3) € S,. From Table II, we find @y — Ay
B; — Ay =g — A,. The set of points (4. 1) becomes
1=(p— 85,80 + 85— 2p,p— 4y),
= (p——Az,Al + A, —p—q—1,g—4,+ 1),
P'3=(q—A2+1,A1+A2—p—q—-1,p—A1).
(4.4)

A, —g t+ 1),
1, A,).

(4.3)

It

The linear factors of Gq(A;x) are
<A2 + x1> <A3 — x1> <A3 + x2> <A1 — xz)
q— Ay q— 4, q— Ay q— A4,
<A1 + x3> (Az - x3>
X .

q—Aa3/\q— A, (4. 5)
These factors yield a zero in the lexical region of the
Mbbius plane whenever at least one of the following
conditions obtains: p— A, + 1 =x, = A;, p— 4y +1
S —X, = Ay, p— Ay +1=x5 =<4, Nowconsider
the intersection of all points satisfying at least one of
these conditions with the triangle defined by the three
points @,@,@4 of Eq. (4. 3). Removing this intersec-
tion from the triangle @,Q,@3, we are left with pre-
cisely the triangle defined by the points PjP5P; of
Eq. (4. 4). Hence, the polynomial factor of G (A;x)
which remains after removing the factor (4. 5) vani-

shes on the lattice points on the boundary of and in-
terior to the triangle P} P, P;.

1997

In order to illustrate these remarkable properties of
G,(A;x), we have displayed in Fig. 3 six triangles
(ignoring now the lexical conditions) of zeroes (six
zeroes in each triangle) of the polynomial G4(352;
X1xp%3),1i.e.,for ¢ = 3 and [A;A,A5] = [352]. In this
case, Gj contams the linear factors (x; + 3) (x; — 5)
given by Eq. (4. 2). Observe the remarkable geometri-
cal positioning of these triangles: The line of zeroes
x5 = b (the lower dot-dash line) includes three
zeroes from each of the three lower triangles, while
the line of zeroes x5 = — 3 (the upper dot-dash line)
includes three zeroes from each of the three upper
triangles. Furthermore,upon removing these linear
factors from G, we are left with a polynomial which
has zeroes on six equilateral triangle (still symme-
trically positioned) of three points each. [The lexical
triangle which remains is, of course, just the one de-
fined by the three vertex points of Proposition 5.]

Proposition 5 will now be used to establish a princi-
pal result of this paper.

Let us recall that the null space JU(T",) of the Wigner
operator labeled (I") is the set of all irrep spaces
with labels [ ] such that

[A18543] _
p(1h ) =

(This was demonstrated in L.) Since, by assumption,
the labels [m] + [A] are lexical, we obtain from Eq.
(1. 2a) the result

(4. 6)

All irrep spaces with labels [m,3myqmg4]:
NUT,) = ﬁ( A+ x )/Gq(A;x) -0

i< \A;+4A;+1

! @

It is our aim to show that N(T",) = M, where 3, is
the maximal null space determined in Sec.3. To
establish this result, we first show that the function
appearing in Eq. (4. 7) can be written in the form

3 A, +xy; L, (A;x

il ( i K >/Gq(A;x)=—q—(———),

isi A+ A +1 F (A;x)
(1:1,2,...,8, (48)

where F(A;x) is that part of G (A;x) which remains
after separatmg off the linear terms (Proposition 5).
L, (A;x) is a product of linear factors obtained by
combining the linear factors of the left-hand side of
Eq. (4. 8) with those separated off from G4 (each fac-
tor which separates off from G, is canceled by a
corresponding factor in the numerator). The eight
ways of writing this result correspond to the eight
cases of Table II. While one can list explicitly the
eight forms of L (A;x) and F(4A;x), we will not do
so; but note instead the essential properties of the
right-hand side of Eq. (4. 8) which are obtained.

(1) In each instance, the linear factor L (A;x) vani-
shes for each set of labels [m] such that (x) belongs
to the null space 4, and on no other lexical points.

(2) In each instance,the denominator polynomial
F.(A; x) vanishes (Proposition 5) on each set of
labels [m] (a finite number) such that (x) is a lattice
point belonging to the triangle defined by the three
points P} P,P; of Eq. (4. 1),and on no other lexical
points.
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(3) At each lexical point (x) where F_(A;x) vanishes,
precisely two linear factors of the form x;, — @ and
%93 — b of L (A;x) vanish, and no linear factor in x4
vanishes; in each case, L (A;x)/F (A;x) = 0.

The above properties are precisely the statement:

Proposition 6: The null space (I",) is precisely
the maximal null space ;.

[Let us also remark that the properties (1)-(3) des-
cribed above also apply (See Fig. 3) to the nonlexical
regions of the Mdbius plane corresponding to the
symmetries of G,.]

We have now accomplished a major goal: The Wigner
operator labeled (T',), the construction of which was
uniquely determined by the geometrical properties

of the arrow-patterns (since the relevant Racah in-
variant operators were uniquely determined), is the
one in the multiplicity set determined by [A] which
has the maximal null space.

There still remains the problem of identifying the

BIEDENHARN AND J. D.
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operator label (I',) with a definite numerical array,
i.e.,a definite operator pattern. We next describe
the method of making this identification.

5. ASSIGNMENT OF THE OPERATOR PATTERN I's

Our procedure for assigning a specific numerical
array (operator pattern) to the Wigner operator
designated by the symbol (T';) is based on certain
limit properties of the Racah functions and the pro-
jective operators.12

Consider the U(3) Racah functions which effect the
following upper operator pattern coupling:

(ry) {r}
[p ¢ O] =|[p—9q 0 0] [¢ ¢ 0]].
) [R]
(5.1)

These Racah coefficients were determined explicitly
in Ref. 1. We note again their explicit form:

(max)
_ 1/2
([p q 01) [p~a 0 0] <[q q O]> (m] +[a] = <q, g ___(A_V_)
(Tr,) (r") (") i=1 (A)) g — AY)!
X+ A, \1/2
L+ AT — AT)A, + A, ! 4 ¢
3 i+ AF = 878 ’+1)‘<Ai+AJ.+1.> 1
x| 1 (5. 2a)
s " ” . 1/2°
b AL+ &) +1 Y 2q — A— A7 + 1
|
where N [(x12 + A {xyg + A — Ay — 1)
p— J— 1 + . ” !
@) [a']=[a@)], [a"]=[a@)], (13 — Ay — 1) Ilxyp + 4 — AF)
(b) [A]is any arbitrarily selected A pattern belong- (19 —q + A —1)171/2 (— ma )25 (5. 4)
ing to [p ¢ 0], (15 + 4 — AZ)! s ‘

(c) the A pattern of the label

<[1) q 0]>
(r'y)
is [A],
(d) and the A patterns satisfy

[a] = [a’] + [a”]. (5. 2b)

Note that since [A] is prescribed, condition (5. 2b) is a
constraint on the patterns (I'’) and (I'”).

We next take the limit of Eq. (5. 2a) as mgq > — .
This is easily accomplished upon noting that

x + a
k!( >zxk
k

for fixed a and % and for large positive x.

The factor in Eq. (5. 2a) preceding [G (4;x)]1/2
assumes the following form for sufficiently large
— M33:

(5.3)

3 (A-)! 1/2
AF I SOV
i=1 (A1 (g — Ay
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To obtain the form of G (4;x) for large — m35, we
use Eq. (2. 24) [for &, ='A; and x; = x,,(i, j, k cyclic)].
For sufficiently large — mg4, we may write
G (81854855553, —X13,X15)
A3 xlz"‘Az—A3+q—1

~ gl Eksl(q—ks)!( ><

kg q _k3 kS
y <x12 + 8, + A5 —q+ k3>(_ mag)292ks A1 A,

k3
1
2

Bph=a-ky BylRo! (A —q + Ry (8g —q + ky)!

=q! 2 (k3!)3<:31> <::><q iska)

o <x12—A2—A3+q—1><x12+A1+A3——q+k3)
ks kg

X

(A + Ay — 2k3)!
(Al + Az—‘q—"ka)'

X (— mgq)2472ks. (5.5)

For Az = g,the k3 = 0 term in this summation domi-
nates the others,i.e.,

)
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o /A3 /8y + Ay A A (A + Ay + 245 — 29)!
G (818585553, — X13,%19) ¥ (q!)z( )( ) g < 1 >< ) ) s, 3
q q qg— A83/\g — Ag) (A + A, + Ay — 2g)!
X (— mg3)29  (5.6a) « <x12 — Ay — Ag + ¢ — 1)(9512 + Ay (= m..)255
g — Aj q— B3 33

for 45 € Sy and sufficiently large — mj,, For 0 <

Ag < g, the term in the summation (5. 5) having k5 = for A, € S, and sufficiently large — mg5.
g — Ay dominates the others,i.e.,

(5. 6b)

Combining Eqgs. (5. 4) and (5. 6}, we obtain the follow-
ing two explicit forms for the limit of the Racah co-

G (8183855553, —X13,%15) ¥ q1[(g — A3)1P efficient (5. 2a):
i
(max)
"
g e ([p q 01) [p—a o 0] ([q g 01) ([m] + [aD
(ry) (rn (r”)
s ( (A1)1(a,)! (81 + A5)1(af + a3)!
85 \(ap)Hap) A 1(ag)! (&g + A,)!
9 g + A — A x1g + Ay) ¥y + A — Ay — 1) 115 — AY ~—1)!>1/2 (5. 7a)
(19— Ay = DI(xyy + Ay — AG)1{xy 5 + A])!
for A5 € S8y;
{max}
lim g 0 0 0 0
maa.,-ml([p q ]) [p—q ] <[q q ]) ([m] + [a])
(ry) (r’) (r”)
-5 ( (p_g)f(P-Al)!(p“Az)!A:;!
025\ (p — q + Az)HA 1AL g — A 1(g — Ap)!
« (K15 + A7 — A8)x1p + p— A) 1 g + A — Ay — D)1y, + A — g — 1)!>1/z (5. 7h)
ig+ 87 — AP+ Ay —p— D)5 + g~ B5)!
T
for A3 € §,. (5.7a) anq (5. ") becpmes apparent upon recognizing
We have given a detailed derivation of the limits, that the right-hand sides of these equations are
Egs. (5. 7a) and (5. Th), because of the considerable square-bracket coefficients of definite labels. Name-
importance of these limits for inducing upper opera- ly, Egs. (5. 7a) and (5. 7b) are expressions of the fol-
tor patterns.!2 The significance of the explicit forms lowing relations:
i
( {(max)
lim
Jum {<[p ¢ O)fio=s o o)a o open+ie)
(ry) (r" (r")
(max)
=l{p q O[[p—q 0 0] ([q q 0]) (myg + Ay, mys + 4,) (5. 8a)
Ay + A, 0 {r" (r”
A1
for Az ESl;
{max)
lim 2
| ({p 7 o}) [p—q¢ 0 0] ({q g 01> ([m] + [a)
™) () (r”) 5

(max)
=\|/p q 0 ({p-q 0 m)([q q 0) (myg + Ay, mag + Ay)  (5.80)
» Ayt By —p ) T

8y
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for Az € S,. The proofs of Egs. (5. 8a) and (5. 8b) are
given by evaluating the U(3) square-bracket coeffici-
ents directly from their definitions [Egs. (2. 4b) and
(2. 4c) of Ref. 1] in terms of the known reduced matrix
elements of the [p — g 0 0] projective operators and
the known U(2) Racah coefficients, thus showing dir-
ectly the equality of these square-bracket coefficients
to the right-hand sides of Eqs. (5. 7a) and (5. Tb), res-
pectively. [For the relation of the notation for U(2)
Racah coefficients used here to Racah's W notation,
see Eq. (4. 12) of Ref. 9.]

Properties (5. 8a) and (5. 8b) may now be used directly
to assign unambiguously the following operator pat-

tern to (T",):
7/ q 0
(p (1:1 ) O) =< A48, 0 ) (5. 92)

AND J. D. LOUCK
q 0
(p 7 0>—p1> A+ A, — (5. 9b
) )° S B
A1
for Az € S,

Observe from Table I that these operator patterns
correspond to

T, =T1,(8,4,4,), (5.10)
that is, the “stretched” pattern (T) is the one having
the difference 'y, — I',, equal to the maximal value
which is compatible with the prescribed A pattern.?

An alternative procedure for inducing the operator
pattern assignment of (T',) uses the coupling law (5. 1)
and properties (5. 8a) and (5. 8b). One can now prove
directly the following limit properties of the projec-

44 tive functions.
for A3 € Sy; (@) Az € Sy
|
ry)
lim p q 0} [my3 Mmy3 Mm33
maz > =0
712 Y22 mi2 Mag
Y11
(Fs)ll m
13 m
= 6A1*Az-712 600’22 A1+ 4, 0 ( 2 >, (5.11a)
m m
12 22
Y11 ext
(b) Az € S,
Ty
lim

M3z >~ o

711

p q 0 (’”13 My3 m33>
Y12 Y22 mig Moo

(rs)ll

= 61"712 GA1"Az’1"722 b

711

where “ext” denotes an extended U(2) projective func-
tion.13 The significance of the limit relations in this
form is to demonstrate the manner in which an upper
operator paitern is induced by limils from the set of
lower operator patterns,e.g.,in Eq. (5. 11a), the limit
is zero unless y;5 = A; + A,, vy, = 0,and these are
the values which we assign to (T',);, and (I',),, in the
upper operator pattern. (A detailed description of
this procedure is given in Ref. 12.)

6. CONCLUDING REMARKS

In this paper, the properties of a class of unique, non-
trivial U(3): U(2) projective functions have been deve-
loped in considerable detail. The purpose of this ana-
lysis has been to demonstrate, by giving explicit re-
sults, the elegant structures which are implied by the
canonical splitting of the multiplicities of the unit
tensor operators in U(3). In particular, we have given
explicitly a truly remarkable polynomial form
G,(A;x), having precisely the properties required to

J.Math. Phys., Vol. 13, No. 12, December 1972

m m
Ay + A, —p ( oo e ) (5. 11b)
12 22

ext

I

describe the intricate null space vanishings of the
U{(3) Wigner operator having maximal null space.

Finally, let us emphasize again that the coupling co-
efficients appearing in the left-hand side of Eq. (5. 1)
are completely known as are the U(3):U(2) projective
operators [p—q 0 O]and [g g 0]. Thus,all U(3):
U(2) projective operators for which the upper opera-
tor pattern is stretched and the lower operator pat-
tern is arbitrary have been completely determined.
Using now the U(3): U(2) subgroup reduction law, we
see that we have indeed constructed for each multipli-
city set the unique U(3) Wigner operator in the set
having the maximal null space.

ACKNOWLEDGMENT

We would like to thank Dr. E. Chacén of the Instituto
de Fisica, Universidad de México for his help and
participation in numerous discussions leading to this
paper.



CANONICAL TENSOR OPERATORS. 11

*Supported in part by the U.S. Army Research Office (Durham), the National
Science Foundation, and the U.S. Atomic Energy Commission.

L. C. Biedenharn, J. D. Louck, E. Chacon, and M. Ciftan, J. Math. Phys. (N.Y.)
13,1957 (1972).

L. C. Biedenharn, A. Giovannini, and J. D. Louck, J. Math. Phys. (N.Y.) 8, 691
(1967).

3. A. Castitho Alcaras, L. C. Biedenharn, K. T. Hecht, and G. Neely, Ann. Phys.
(N.Y.) 60, 85 (1970).

*Three unit coplanar vectors a;, a,, 8; emanating from a common origin O at a
mutual angle of 120° define the three positive coordinate axes of a reference
frame for the Mobius plane. The ith coordinate axis is the line which extends
from — o= to + and contains vector a;. Each point 2 in the plane is represented
by an ordered triplet of real numbers (¥1X,x;), where [x is the distance from
the origin O to the point P; determined by the intersection of axis / with the line
through P perpendicular to axis . x; is positive (negative) if the direction of the
vector OF;, is the same as (opposite to) that of a;.

2001

S A. Erdelyi, Higher transcendental functions, Bateman Manuscript Project
(McGraw-Hill, New York, 1953), vol. 1, p. 66.

 Numerically, 9% is the same as the so-called inner multiplicity. dis also called the
outer multiplicity, See B, Gruber, J. Math. Phys. (N.Y.) 11 1783, 3077 (1970),
for a different approach to this subject.

D. E. Kittlewood, The theory of group characters and matrix representations of
groups (Oxford U.P., London, 1950), 2nd ed., p. 98.

8G. E. Baird and L. C. Biedenharn, J. Math. Phys. (N.Y.) §, 1730 (1964).

?3. D. Louck, Am. J. Phys. 38, 3 (1970).

191t generalizes in the obvious way to U(n).

' By the statement that [m3m23m33] belongs to a region R of the Mobius plane,
we mean, more precisely, that (x23¥3,x,2) € R, where the x;; are defined in terms
of the my; through Eq. (1.2b)and pj3 =m;3 +3 i

25 D. Louck and L. C. Biedenharn, J. Math. Phys. (N.Y.) 11, 2368 (1970).

B1n 111 of this series, we prove that the extended U(2) Wigner coefficients are, in
fact, U(2) Racah coefficients.
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A necessary and sufficient condition for implementation of some local gauge transformations in a class of irreducible repre-

sentations of the CAR algebra is proved. Some particular results on the unitary group of implementation are then given. Not
all of the pure states induced by these representations are unitarily equivalent to “‘quasifree” states of the class we consider;
it is shown that such a state is unitarily equivalent to a quasifree state if and only if a certain property (characterizing the

“discrete” states) holds.

. PRELIMINARIES

A. The fermion C*-algebra and some of its gauge
transformations of second type

Let (H, s) be a real separable Hilbert space. Consi-
der the CAR algebra @ = @Q(H, s) built on (H, s), i.e.,
the C*-algebra generated by the elements B(y), where
B is a one-to-one linear map of H into @ such that

[BW), B(@)], = 2s(¥, )1

(I the identity element on Q).

VY, pc H

Suppose A is a linear operator on H such that
(i) dim(ker A) is not odd (this is not a restriction).

(ii) |A! is diagonalizable (where A = JylA| in the
polar decomposition).

We choose a complex structure J of H such that

J|(ker A)t = J,l(ker A)*,
J|ker A an arbitrary complex structure of ker A.

We shall write

Al = 22 APy a,eR
REN k

where P, are the orthogonal projections on H, and

H, a two~dimensional real subspace of H which is in-
variant by J and such that H = @, .~ H,. We remark
that some A, are possibly not dlfferent (From now
we denote by ¢p the Hilbert sum and by (D the weak
sum). A is the infinitesimal generator of a one-para-
meter strongly continuous orthogonal group {Te}ec R
on A, By Ref.1 we can define an automorphism 7, of
& with

Te(B( V) =

B. The problem

We look for irreducible representations of @ for
which 74 is implementable.

B(T ).

This problem was approached by Dell'Antonio.2 We
give here full proofs of the results announced by him
and we generalize some of them.

Il. THE CLASS OF REPRESENTATIONS WE
CONSIDER

Let {4/1
=— zB

2} be an orthonormal basis of H,; then
1)B(Z) verifies

[ek’B(¢)]+ =0
0z = 1.

Vo € H,, ( )
II. 1

J.Math, Phys., Vol. 13, No. 12, December 1972

The center of @, = G(H,,s) is reduced to the sca-
lars, and therefore any solution of (Il. 1) is ©, or —©,.

Let 7/, be an arbitrary irreducible representation of
@, into X, = C2.

We construct the representation 7’ of @ into 3¢ =
Xpen e, from the following: VE eN,j = 1,2,

T W) =58 1 (60 rBw) e &7
J

x LI

i ]:[Cz)’ej::l: 1.

It is well known that each @ = &),y 2, 2, being a
unitary vector of ¥, , determines an incomplete ten-

sor product 3% = ®k§§,“>c;ck with € () the equiva-

lence class of © for the relation @ = Q7 iff

2 @) —1] <+ .
EEN

It is not difficult to see that the 3¢ are invariant
subspaces of 7’ and that the restrictions of 7’ to those
subspaces denoted by 7/, are irreducible and there-
fore 7’ is the direct sum of the set of the =y,.

Let 7 be the representation of @ into 3¢ defined by

TBW O 1@ e T, BWNe &7,

j=12,
where
y (@l) = 0’?, Trk(B(lPi)) = 0‘;

and

1 0
<0 1)is the matrix of ¢3 in the canonical basis of X,

0 1
(1 )is the matrix of o} in the canonical basis of &,

-1
( ) 0>is the matrix of ¢ in the canonical basis of i, .
2

Accordingly we shall write 7 = 0,y 7,.3 It is clear
that for each ! € N, a unitary operator U, on &,
exists such that vx € @,, 7,(x) = U7} (x)UF. H U =
&,ecn U, we construct

7T"(x)
hence

TBW) = Q7

=Un'(x)U*, VxeQ;

€, 030 m,(B(Y,))® Q?:il I.

V=&,enV, With V, = 03 if the number of 2 < ! such
that ¢, = — 1 is odd and V, = I, otherwise.
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Clearly n(x) = Vo (x)V*, Vx € @;hence 7'(x) =
Wn(x)W*, Vx < @, where W is a unitary operator on
X.

Any irreducible subrepresentation 7, of 7’ is unitary
equivalent to the subrepresentation 7., of 7. There-
fore we can restrict our attention to the study of the
irreducible subrepresentations of 7.

Proposition: mw is unitarily equivalent to 7, if
and only if  and @’ are weakly equivalent.

Proof: Recall that @ = Qcn 2, and Q7 = e n 24
are weakly equivalent iff 27, (1@,1Q7)] — 1)] < + 0,
Suppose that @ and @’ are weakly equivalent. By Ref.
4, one can find for each # € N, v, €R such that

@) pern & @7FR,) e

Let U = X, €% I,. Then UQ € X% and we have

To (%) =Ung(x)U*, Vx & Q.
Conversely, if @ and Q' are not weakly equivalent, let
us denote

wy(x) = @Il7,(x)Q), %< a,
and

wQ/(x) = (Q, ]ﬂg/(x)Q ,).

Let U, € £(&,) be an unitary operator such that

U, =,
and let
k-1
U, =R/ 1;® Uk®®:°+1 i
j Jj

w, =1 1T

The proof will be continued in the same way as in
Sec.IIIA2.

lil. THE THEOREM

We note

2= K <ak> and x, = |la,l2.
reN \fB,

A. Statement

A one-particle evolution 1, is implementable for the
representation ,, if and only if the following condi-
tion holds:

(A) 2 x,(1—x,)inf(1,22) < + <,

kEN

If this occurs, a strongly continuous one-parameter
group of unitary operators (we shall call such groups
SCOPUG) {Wy}oer, Weo € T, (R)” = £(39), exists
such that

Vxc @, Ve R
B. Proof

1. Sufficiency
Suppose

20 %, (1 —x,)inf(1,2%3) < + o,
REN

To(To (X)) = Wom o (x)W_g.

2003
Let

(o )
Uk,e = 0 eixke .

It is a unitary operator on 3,. Uy = Qe U, is
unitary operator on 3.5 Clearly

M1 (BWE)) = Ugm (B Ugt,
hence U, implements 7, for the representation .

Changing U, , into V,, =e'*U,,, u, € R, Vg =
Qren Vi implements 7.

i=1,2, keN;

We choose u, such that

arg(V, o 92,19,) = 0.
We get
(Vo 2 19,)2 = (U692, 192) 12

=1—4x,(1 —x,) sin2(x,6/2);

from the hypothesis

2 %, (1 —x,) sin2(x,0/2) < + ®;

REN
hence

E I(Vk,99k|gk)2 - 1[ <+ o,

REN
Myen (Vio 2,19,)2 converges and V59 C 3%, We
note now V, its restriction to 3%, Hence

To(To(x)) = Vamo(x)VE, Vxe @, holds.
It is important to remark that V, has been calculated
for each § € R so that {V,}o. g is not a group in the

eneral case. By Ref. 6 there exists a SCOPUG

fwe toeg in £(3€9) such that

vx € @’ Ve e R, "Q(Te (x)) = Weﬂg(x)W_e.

2. Necessity

Condition (A) is equivalent to the both following con-
ditions:

(i) 27 xp(l—xy) <+,
B A pl=1

@ 2

x, (1—x,) <+ ©,
EIApl=1 k( k

Suppose condition (A) is false. Then either (i) or (ii)
is false. The following two lemmas prove that in the
both cases 36 € R and 25,.y %, (1 — x,) sin2(x,0/2)
= + 0,

Lemma 2.1: Let (r),cn, 07, = 1,and let
(M) pens X € R, [X,] = 1. Then

(Z) 7, sin2(7\k9)<+00,V96R>:> 2 7, <+,
kREN kEN

Proof: In our case we have, for », = 4x, (1 —x,),

2 7, sin2(x,8) < + o,
rEN

Vo € R.

In the proof of the sufficient condition we saw that the
convergence of this series implies the existence of an
SCOPUG {W,tecrs Wo € £(3®) such that

J.Math, Phys., Vol. 13, No, 12, December 1972
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vxe @, Vo € R, 7y(7e(x)) = Weng(x)W

Now we constructed a set of unitary operators
{Vo}ec r such that

Vxe @, V8 e R, 7o(1e(x)) = Vomg(x)VE.

7, being an irreducible representation,
Wo = X(G)Vs;

hence
[Weal)] = Ix ()| [(Veo() =V lQ)]

x:R=C, Ix(®l =1;

and

[(We Q)12 = TIT [1 — 4x,(1 — x;,) 5in2(x,,6/2)].

Now {We}ee r is strongly continuous in 8; therefore
0

8- [(Wy0l0)]2 = T3 [1— 4x,(1 —x,) sin2(2,6/2)].

is continuous V8 < R. Let us call

f@)=1—4x,(1—x,) sin2(x ,0/2), P(8) =

We have P(0) = 1 and 6 — P(6) is continuous V4 € R,

0=PO)=<f,(0) =1,

and

Vk e N, vé € R,

21— £,0)] =< lLogf,8)], VEeN, Ve cR,

(Log is Neper logarithm)
and

LogP(8) = Z};o Logf,(8) for small §'s.
3

Let us call
S(8)

=2, [1—fy®]<+@ for P(g) = 0;

i.e., in a neighborhood of 0

£8(9) =— LogP(9) for |8] <=g,<1;
moreover,

35,0 =121 [ - 740 =
Now,on [— 8y, + 6,], 6 - — Log P(6) is an integrable
function, and S is measurable as a pointwise limit of

measurable functions. Hence S is integrable on
[— 6y, + 6y]. We take now 8 € [— 6,, + 6,],

o 1 —cosa,f
SO =27 n(——5—+) <=

_r® IR AL sin{: ,8)
R0 = [ s 04 =B (-5 )

£5(6) = — Log P(6).

= fo ® syat.
Let

Fo) = [; st

1

o /7,02 cos(r,0) — 1
Jy Fatya =§_‘,” <..£4_+ 7 _1_»1__)

nz

< f: F()dt < + .

— cos{r,6)

© {1 )
(B) ?1 rk( Y >< +o gince [A,] = 1
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© = (

¥, 62 cos(A,9) — 1
B )

&k
4 22
absolutely converges, since

§1 v, cos(x 9) ‘ _'2 f g ()ldt

7,02
4

< f6 F(t)dt < + o,

f [1 —'fk t)]dt

Obviously the sum of (B) and (C) shows that

n

with g,(8) =

10257 7, <+ withg=0;
k

hence ET 7, < + . ]
!

Lemma 2.2: f f:R - R, f(0) =0, f differenti-
able at 0 and f'(0) = 1, u, € R, (u,),c bounded,
v, = 0Vk € N, then

(31 € Vp(0) and V9 € I, ‘?’f A

<+co)®}3 rpud < + o,
® 1

Proof: If J € Vg(0) is such that x € J = [[f(x)/x]

zx < f(x) < 3x,

and I € Ux(0) is such that V8 < I,0u, € J, VRN,
then

20 o0 00
$62 kzl rul = 2;1 7, [flu,6)]2 < 162 21 r,ui. B

Now, we return to the proof of necessity. Let 6 € R
such that 25, .\ %, (1 — x,) sin2(2, 8/2) = + o,
Let u,(6) = B(cos(r ,¢/2W% — sin(x ,0/203) B(¥L).

”
un'm(e)‘:— I1 uk(G).
k=an

we(x) = @l71,(x)Q), Vvxea@ 2.1

We have

vx € Q(E, ,, s),  wg(x)

= wg o Te(u, ,(0)x Uy . (0)).
Since

BW)B(¢) B(W) = B2s (¢, Y)Y — ¢) = BS,¢),
S, the symmetry with regard to ¥ (hell = 1.
For any ¢ € Hy, 7o(B(¢)) = Ble' "*°¢) = B[R, o9),
R, 40 the rotation of the argument A 8. Hence (2 1)
holds

Let us consider €, , = I;I:’ ©,; we shall note @, (H,s)

(resp. @, (H,s)) the C*-algebra (resp. the closed

vector-subspace) of @ (H, s), generated by products
of even (resp. odd) number of B(y)'s. Let us denote

w =wnle’e(En,m’s)®01nlao(En ms s),

n,m
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3
Tym = (%;" 7,  (tensor product “4 la Powers” 3),

6’zn,m = ®;n Qp.

It is not difficult to see that

C:x + 0y ,19€ Q. (E, ,,S) ® 0, 1G(E, ,,8)
x+y€ GE, ,,s)isa C*-isomorphism and that
Wy, m(2) = @ l7, (2N, ), Vze @ (E
® 60y ,184(E, ,,8). 7, . isan irreducible repre-
sentation, and hence w,, ,, is a pure state. Lemma

2. 4 of Ref. 7 implies (Q,(E, ,,,s)® ©; 1@y (E, ,.,9)
is a C*-algebra8):

s)

n,m?

n,m?

”((‘)9 —Wg e Te)]ae(En,m’s) ® 91,7:-1&0(En.m’s)”

=201 — |w, @, ,,(0)|2]1/2
= 2(1 — klz]n’" [1— 4x,(1 — x,) sin2(n k9)/2)]>1/2-

Now

2 %,{1 —x,) sin2(x ,0/2) = +
rEN

implies
o]
m [1-—-4x,01 —x,) sin2(x,6/2)] = 0,
i=n

i.e.,
m
lim IT [1—4x,(1 —x,) sin2(x,8/2)] = 0.

m,® i=n

Denote by @(E,,s)¢ the commutant of G(E,s) in @.
Then

[l
E H El = H
( * e k)’ " k§%1 k2
AUE,,s) = Q,(E;,s) ® 0, ,Q4(E},s),°
G, (E},s) ® ©;, ,Q4(E},s)D Li;";l [G.(E i1, 8)

i
P s

i

® el.u—laO(En+1,k) S)]
Thus

[(wg — wq o THIA(E,,s)ell
=l(wg — wg o TG (EE,s) @ Oy, 18,(EL,s)

= lim n(wg —Wq° Te”ae(ErHl,k’S)
k.,

4] Gl'n_l{io(EMl'k,s)l:
= 2.
Now E,,y DE,and Upen E,= Bren Hpy Upen Ep = H.
Hence, by Lemma 2.1 of Ref. 7, w, and w, ° 7, are

not unitarily equivalent; therefore, no unitary Uy, €
£(392) can exist such that,vx ¢ @,

To(Te(x)) = Uyt (x)UY;
T 18 not implementable for the representation 7,. M

iV. OTHER PROPOSITIONS AND REMARKS

(1) Fix 0 € R;there exists a unitary operator U, €
£{39) such that

2005
To(Te(x)) = Upmo(2)UF Vxe@
if and only if
2o x,(1 —x,) sin2(x,6/2) < + 0. (Iv.1)

EEN

Proof: If (IV.1) is true, the existence of U, is
checked (see the beginning of Sec, III).

If such a U, exists, U, = eirV,, V, is the operator
constructed (Sec.IIA)

Ug € £(%92), Ug=eir Q V,,.
REN

Ut = er(V,,Q,), € X9, therefore (Vk,eﬂk)k ~(R,),
which implies 2Jzen I(V,,0Q,192,) — 1] <+ .

Recall that arg(V,,Q,19,) = 0; hence

d (Vk,egklgk) = ‘(Vk.egkmk)l

an
2 %1 —x,) sin2(2,8/2) < + . |
kEN

(2) Let

there exists a unitary operator
N = 18 ER | Uy € £(X%) such that: Vx € A
T l7o(x)) = Ugmg(x)UE.

N, is an additive subgroup of R,
Proof: Let 64,0, € . Then
2 x,(1—1x,) sin2(1,8,/2) < + ®

kEN
and

Y x,(1—x,) sin2(x ,8,/2) < + ©,

REN
Let us set r, = x,(1 —x,), qg}e =2,64/2, 902 =
X302/2; Diren 75 Sin2(pl + ¢2) converges, for
M= v, sin?(pl) cos2(p?

k%\{N k (‘ff’k) (‘Pk)

= 2 7, sin2¢] < + @,
REN

N= 2, 7, sin2(¢2) cos2(p2)
FEN

< 2 7, sinZp2 < + o,
kEN

IL| = kZN 27,/ sin(¢}) sin(p3) cos(¢}) cos(¢?)]
€
< Z“& 7,[sin2(@l) + sin2(p3)]< + .

ke

Now

M+N+ L= 2, r,sin2(gl + ¢2).

*EN

Obviously 8 € Ny and b e N, = — 9 € N,

(3) If20,cn ¥:(1—x,) < + © we shall say that repre-
sentation 7, is a discrete one. Sec.IlIBl implies that
all the monoparticular evolutions are implementable
for every discrete representation.

Statement: If m, is not a discrete representation
(e, 2D pen %31 —x,) = + ) and if {1}, has nei-
ther 0 nor infinite as accumulation points, then 3,
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=gZ,,a € R,
integers).

(Z the additive group of the relative

Proof: Except for a finite number of &'s we have

A, € fa, b} ula’,b7] witha” < b7 <0 <a <V,
We can omit a finite number of &'s without changing

91, which is determined by the convergence of some
series. The convergence of which is not changed by

the suppression of a finite number of terms. Let us

build a dividing decomposition of those intervals.

Let e, =3a, 4 = (3)a’, I, =[a, = [a},a,.1] A
finite number of I, overlaps [a/, b']

Let [r},,s,]=[1/3a,
terval.

fpcr,andbc[r,s

n? R
same way let us write

, 7/2al,,] which is a proper in-

'], then uo < [n/3,7/2]. In the

au _ ..au 4= (%)"a"l” - [an an*rl}

A finite number of 17, overlaps [a”, b"].

Let [r4,s%] = [n/2a7,
terval.

Ifuec 1/ and 9 e [r7,s2] then ug € [n/3,7/2]. Let
us denote {Ip}1<1,<m and {[r,,s p}}1<i><m those in-
tervals and let

,7/3a”, . ] which is a proper in-

L,={keNx, €I}
Then
E' £, (1 —x,) = Z}m %, (1 —x) =+

kEN kU, L
PP

Ifhe Lythen), € I,, 1,0/2€ {1;/3 7/2] as soon as
g [271,, 2sp] hence $in2( A 20/2) € [§,1] and

> %, (1 —x,) sin2(x ,6/2) =
REN
Thus not any U, can exist for not any 6 € [r,,s,].

From that we conclude that 3, = aZ for some
acR,. ]

{4.1) Definitions: As in Sec.IIIB2, we shall denote
G, (H,s) the closed vector subspace of G generated
by products of odd number of B({)'s.

A state w on @ will be called quasifree3-10.1 when
wl@o(H,S) =0,
w(nf" B(%)) =
K i1<i2< _<iﬂ
ip<ip
€, being the parity of the permutation ¢

(1 2 2n — 1 2&2)
o= . )
zl ]1 ... /L ]n

n

€, T wlBle; )B(p;,),

Let us call w,{x) = Q17,(x)Q), x € @, with

Q=8 (ak).
REN \ B,

Accordingly with Sec. 4. 3 below we call w, a dis-
cvete state
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Hf Do 4l —x,) <+ © (x, =l0,[2).

(4.2) Lemma: w, is quasifree if and only if
B, =0, VEeN,

Proof: Suppose w is quasifree.
wo (B(Y1)) = 2 Re(w;B;) =0 }
wo (BW3) =— 2 Im(aB;) =0

=> ayB; =0and |ay|2— [B]2 =+ 1;
hence
wg(B(lP];g)

wo (BW2) =+ 2Im(a,pB,) =0

=% 2 Re(akﬁk—) =0
}:‘> .8, =0

Conversely, suppose YE €N, a,8, =0, Lety =
ﬂl v, With y, = B BWW3) or v, = BWW}) or y, =

B(wz) ify € Q4(H,s),at least there exists a kb €N
such that y, = B(z{za"), j=lorj=2and

wo(y) = @7, (9)Q) = s ©@,ln(y)E,Q),

= 3
=14 or o3,

It}

From
(@4, |7, (B )R, ) =+ 285 (@, B ) =0
@, Im (B NoRQ, ) = 2if2(e, B, ) =0
( j =1 higher position)
i = 2 lower position
we deduce w,|@,(H,s) = 0.
Moreover,

o, (g; B%)B(wi)) =1 0, (BWHBWE). M

(4.3) Proposition: There exists a quasifree state
wg, unitarily equivalent to w,, iff w, is a discrete
state.

Proof: Suppose w, is unitarily equivalent to a
quasifree state wy, with

af
o'=®( k), a\Bl, =0, VkeN.
REN\PY

Recall that w, and wg, are unitarily equivalent iff
{Sec.II, Proposition)

2 [1— @l

REN

W] <+,

which is equivalent to 3 M,L CN|, My L =N,
MNL=0

T (1= la )+ gﬁ 118 <+,

EEM
2 = Vx,)+ E A—VI=x,) <+
keEM

which implies that: I1,.,, vx, converges and is dif-
ferent from 0, therefore so does Il yey %5, EkEM
{1 —x,)<+4eo;,., V1 —x, converges and is dif-
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ferent from 0, therefore so does I1,., (1 —x,),
Dipey ¥p <+ 0580 2, %l —x,) < + 0,

Conversely, if 20 ,cn %,(1 —x,) < + ©,let

M={keNlx,>1i} 2 (1—x,)<+wo,
keEM

L=N-—-M, 2 x,<+o,

k&L

which implies [1,c,, x, converges and is different
from 0 such as I, (1 —x,) and hence [T, Vx,

and [T,.; v1—x,. In other words
L A—Vx)+ 2 1—VI=x,) <+ o,
rEM keL

2007

Calling

-5
reN\ B}

we have that 25,y [1 — [(Q,192)]] < + © and the
quasifree state wg, is unitarily equivalent to w,. W

ACKNOWLEDGMENTS

The authors are very indebted to H. Faure, G. Rauzy,

G. Rideau, R. Seiler, M. Sirugue, D. Testard, J.C. Tro-

tin, and A. Verbeure for illuminating discussions.

The authors would like also to thank M. A. Grossmann
for reading the manuscript.

*Attaché de Recherche—C.N.R.S.

T Maitre de Conférence—Université de Provence.

'E. Balslev, J. Manuceau, and A. Verbeure, Commun. Math. Phys. 8, 315 (1968),
Sec. 1.

2G. F. Dell’Antonio, J. Math. Phys. 12, 148 (1971).

3R. T. Powers, thesis (Princeton University, 1967).

4J. von Neumann, *On Infinite Direct Products,” in Collected Works (Pergamon,
New York, 1961). Vol. III, Def. 6.1.1 and Lemma 6.1.1.

5Y. Nakagami, Kddai Math. Sem. Rept. 22, 341 (1970), Lemma 3.1, Def. 3.1.

SR. R. Kallman, J. Functional Anal. 7, 43 (1971}, Theorem 0.7.

"R. T. Powers and E. Stgrmer, Commun. Math. Phys. 16, ! (1970).

83. Manuceau, F. Rocca, and D. Testard, Commun. Math. Phys. 12, 43 (19€9),
see (2.1).

? Reference 8, Lemma 2.3.1,

!0, Balsiev and A. Verbeure, Commun. Math. Phys. 8, 315 (1968).

J. Math, Phys., Vol. 13, No. 12, December 1972



On the divergent perturbation expansion for the vacuum polarization by an

external field
S. Graffi*!

Department of Physics, New York University, New York, New York 10003

V. Grecchi

Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Bologna, Italy

{Received 5 June 1872)

The divergent perturbation expansion of the exactly solvable vacuum polarization by an external constant electromagnetic
field is examined. It is proven that the Stieltjes method, known to be valid for the vacuum polarization by a pure electric or
a pure magnetic field, fails in the general case to sum the perturbation expansion to the exact solution. This implies the non-
convergence of the Padé approximants to the solution under these conditions. The validity of the Borel summation method
and the convergence of the related approximation procedures are also proven.

1. INTRODUCTION

The vacuum polarization by a prescribed external
constant electromagnetic field is one of the few phe-
nomena in quantum electrodynamics for which an
exact solution is known,1l Furthermore, this sclution
gives rise to a divergent expansion in powers of the
fine structure constant. Now in recent years there
has been considerable interest in proving the applica-
bility of the classical summation methods for diver-
gent power series? to many problems in quantum
mechanics as well as in quantum field theory, for
which the perturbation expansion is known to be diver-
gent:3 it is, therefore, interesting to show the validity
of these methods in the present context,

For the particular case of the vacuum polarization by
a pure magnetic or a pure electric constant field it
has been proven that the divergent perturbation ex-
pansion is Borel? and also Stieltjes® summable to the
exact solution, this last result implying the conver-
gence of the Padé approximants,

In the present paper the general case in which both
the electric and the magnetic fields are present will
be examine, and it will be proven that the perturbation
expansion does not sum to the solution under the
Stieltjes method (while it still does under the Borel
one), thus showing the nonconvergence of the Padé
approximants under these conditions.

However, the convergence to the solution of the gene-
ralized Padé approximants® will be shown and also
that of the approximation method consisting of apply-
ing the Padé approximants to the appropriate gene-
ralized Borel transform.?

2. INAPPLICABILITY OF THE STIELTJES METHOD
AND NONCONVERGENCE OF THE PADE
APPROXIMANTS

The complete Lagrangian due to the vacuum polariza-
tion by an external constant electromagnetic field, as

Putting RefesX) = x, Im(esX) =y
we have

47as3G = xy, 4ras?F = 3 (x2 —y2), (2.2)
and

%2 = 4nas2[F + (F2 + G2)1/2],
y2 = 4nas2[— F + (F2 + G2)1/2],

where o = e2/4w is the fine structure constant. The
Lagrangian (2. 1) takes now the form

L=-F-L I
where the interaction part L, is given by

1 ooes
LI~—8ﬂ2f

x [y coth(x) cot(y) —1—3(®x2—92)]ds (2.3)
and use of the identity cosh(x + i{y) = cosy coshx + ¢
siny sinhx has been made. Notice that L, is a func-
tion only of o through (2. 3), since F and G are con-
stant quantities.] The first step in proving our state-
ments is the following:

Lemma 2.1: The Lagrangian (2. 1) may be written
in the form

L) =202 ¥@at

~w 1+ al 2.4)

Y (f) being a function positive in (— «©, + ©) with finite

moments in the same interval, i.e.
+00

S trymat< +o, n=01,2---.

Proof: From (2. 3),using the expansions

x cothx= 1+ 2x2 E M-I-————
1 x2 + n2p2’

. N ] 2 0
it has been computed by Schwinger,! reads ycoty =1+2y2 3 1 —, L 1 ’
1 fe es 7=l Y2 — néy 6 nel n2
L=—~F-— f
g2 we get
x ((es)zc M- L-3ERF), Q1) L =L [T 232 5 1
Im cosh(esX) 472 70 g3 X2 w21 (y2 — n272)n2p2
where ¢ is the electron charge, F = 3 F2 =3@H2— I E2) _x2 2 1
is the free electromagnetic field Lagranglan,G e y2 4 (x2 + n202)n2q2
€urpo F v Fpo = B* H is the pseudoscalar electromagne- w

tic tleld invariant, X = [2(F + ¢G)]¥/Z, and the elec- +2 0 1 ds
tron mass has been put equal to 1. mm=1l (%2 + n202)(y2 — n272)
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Taking into account the expansion of cothx and per-
forming an elementary rearrangement, this formula
becomes

o g3 2 2
L) = f es3 zyz[i\iz 3?11 (y2 —n'/-l’ﬂz)nzﬂ2
%2 1 2
92 w1 (x2 + n272)m2n2 1 A2 n27r2 f1< >
+2 Z} —_— f1<£ mr)st,
=l y2 — n2n2 Y

where f,(z) = (z cothz)/222, and putting f(z) =
cothz/z we have

L) = 1 foo < 23’2[2 ——]‘——f<2 mr)

=l x2 + n272

YL e (; "")]ds’ (2.5)

Let us now introduce the following variables:
s' =82, x =x2/as? = 4q[F + (F2 + G2)1/2],

y'=y2/as2 = 4n[— F + (F2 + G2)1/2],

so that (2. 5) becomes

Ly@) =202 [ e5'G2 [f} — f(—y;>1/2 nt

w1l as'x’ +n272 " \x

il 1 4 1/2)]
+ —_— — ds' (2.6
»?1 n272 — as'y’ f<y’> s 2.8)
and can be rewritten in the following way:
G2
L) = Zaz(—
yl
x [0 Tiaa 1@ /y")V20m) explna(t)V2/y12]
1+ at
+ G2 feoZ)n=1 f((y'/%')1/2 nm) expl—n7 t1/2/x'1/2)dt>
% 0 1+ at
1 +at’
where
® 1/2
- (")
¥ w1 \\y
G2
X exp|—nn(— )V/2/(y2)1/2]0(— ¢) + =
xl
2 1/2
X 25 f(( > mr> exp(— nwtV/2/x'1/2)9(¢),
=1 x!
’ 2.7
the moments being
A,=[_ tmy@at
2} G2 x'\1/2 x’ m
=2(2 + 1)! — n N
om0 % () ) aee) ]
(2. 8)

The following statements are now immediate conse-
quences of Lemma 2. 1.

2009

(a) The perturbation expansion of L, () in power
series of o has vanishing radius of convergence. It
is indeed enough to remark that, from (2. 4), the for-
mal expansion of L, (a) is given by

L,(a) = 2a2 f} A, (—a)n 2.9)
m=1

and from (2. 8) it follows that

lim AY* =+ .

n—00
(b) An integral of the type (2.4) defines, a priori,two
analytic functions: one in the upper half-plane Ima <0,
and another in the lower half-plane Ima > 0. In our
case, however, one function can be analytically con-
tinued into the other, since ¥ (¢) defined by (2.7) is
piecewise analytic, and this implies that the real axis
is not a natural boundary.

To prove our statements about the failure of the
Stieltjes method in summing the divergent expansion
(2. 9) and the nonconvergence of the Padé approxi-
mants to the exact solution, we need also the follow-
ing:

Lemma 2.2: The Hamburger moment problem
+00
A, = [ tro@adt

where A, are given by (2.8),and ¢(f) is a2 nonnegative
function in (— «, + ®), is indeterminate.

(2.10)

Proof: It will be shown by explicit construction
that there exists at least one function other than zp(t)
defined by (2.7) whose moments coincide with A .
is indeed ea51l¥ seen that there exists A > 0 such that
Y(t)> Ae8ULDY2 where B = 7/min(Vy’,Vx’). Now,
taking into account the well-known integrals®

L1 e m¥® cos(kV3 2/3)dt = 0, n=0,1,2,...,
k>0,

we have that ¥, (f) = Y(t) + AeB g Bt?/?
cos(V3 Bt2/3) is positive in (—w, + ) and

L2y mat= 77

As a direct consequence of the former lemmas, we
have now the following:

Y tndt = A,

Theovem 2.1: The divergent perturbation expan-
sion (2. 9) does not sum to L, (a) under the Stieltjes
method, i.e., the Stieltjes type continued fraction
associated with the power series (2. 9) does not con-
verge to L;(a). This implies that no diagnonal
sequences of Padé approximants to (2. 9) converge to
the exact solution.

Proof: We know that L,(a) has the representation
(2.4), where Y/(t) is a particular solution of the inde-
terminate Hamburger moment problem (2. 10). Then,
by a well-known theorem of Hamburger,? for the
Stieltjes type continued fraction associated with the
series (2. 9) which exists because the moment prob-
lem has solutions, one of the two following cases
holds:

(i)  The continued fractions is divergent, or
(ii) the continued fraction converges to a mero-
morphic function in the whole complex o plane.

J. Math. Phys., Vol. 13, No. 12, December 1972



2010

Since we know that Ll(a) is not meromorphic, in any
case the continued fraction does not converge to it,
and neither do the odd and even approximants of the
continued fraction, the [N, N] and [N, N — 1] sequences
of Padé approximants. The same result holds for any
other diagonal sequence by a theorem of Wall,10

Let us close this section by indicating how it can be
recovered in this framework the Stieltjes summabili-
ty obtained in Ref. 5 with a different method, for the
particular case of a pure electric or pure magnetic
field.

A pure magnetic field is obtained when G =0, F = 3
H2 > 0,i.e., through (2.2), y = 0,x = esH. Alterna-

tively one has a pure electric field when x =0,y =¢sE,

Consider now only the pure magnetic field, since for

the pure electric one our considerations are the same.

By taking the constant H equal to 1,formula (2. 3) be-
comes

ph=_1 foco es;; [(es) coth(es) — 1 — 5 (es)2]ds,

! 872
(2.11)
and its divergent Taylor expansion in powers of a is
given by
L¥a) = ~ L 3 @nesn, @=38!,.
812 p=9
(2.12)

where B,, are the Bernoulli numbers. The same
procedure worked out for L (@) shows that (L¥(a))/
(@2) may be written under the form

Li(a) a(t)dt
! —=— o , (2.13)
a 1+at
where
1 = 1 -nvT /2
o)y ==— 2, em¥1i/2 >0 0=i¢< o, (2.14)
2 n=1 n272

its moments being of course given by

a, = f: tn o () dt
=11 . @n + 1)!
= (gg)2=* B Ll
gz &7) 22 Tom + 2))1

Now, since B,, ~ (— 1)*"1 (2rn)!/(227"172%) ag n > © 11
the Carleman criterion8 2 ; 1/%%a, = « is
satisfied so that the Stieltjes moment problem ¢, =
ji” tn o(t)dt is determined. As it is well known, this
implies the convergence to (L{ (@))/(a?2) of the
Stieltjes type continued fraction associated with its
divergent expansion, i.e., the Stieltjes summability,
and, equivalently, the convergence to L¥ (@) of any
[N,N + j], = 1, sequence of Padé approximants to
the divergent series (2.12).

3. BOREL SUMMABILITY AND CONVERGENCE
OF THE RELATED APPROXIMATION METHODS

We have seen so far that the Stieltjes method fails,

in the general case,to sum the divergent perturbation
expansion to the exact solution, This is not the case
for the Borel one, as we will now prove, From (2. 6)
we have
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L (o) = 2a2 fooo e Vs’ G2
Sz (F((x /y")V/2 nmr) 1
* ’§1< n2q2 1 —[(as’y")/ (n2n2)]

S((y' /%)Y 2 nr) 1
* n2m2 1+ [(as'x’)/(nznz)]>' (3-1)

We can write
L,(@)=2a2 [, eV F(as')ds’, (3.2)

where F(a) is given by the Stieltjes transform
o dp(t)
F(a) = —=7 dt
f'°° 1+at

the function p(z), bounded and increasing for — o« < ¢
< @, being of course defined as follows:

_ 2 5 | S /y")Y 2nm) y’
pll) = Gznz=;1[ n2n2 6 <t * n27r2>

+ f((y’/x’)l/znw)9<t_ x’ )]

n2n2 n2q2

(3.3)

(3.4)

It is a simple matter to see that the Stieltjes trans-
form (3. 3) defines a meromorphic function in the
whole complex a plane, having simple poles with
positive residues at @ = — (n272)/(x"), n=1,2,--;
a =+ (n272)/(y'),n=1,2,...,and that its conver-
gent Taylor expansion around o = 0 is given by

o< 5o EH(E) ) ()

+f<(;3’7'>1/2n”> (ﬁ;)m] (3.5)

Defining, as usual, the Borel transform of order 2 of
the formal perturbation expansion (2.9) of (L (a))/
(2a2) through the power series

LB@) A,
202 mzo (2m + 1)!

(3.6)

(" a)my
formula (2. 8) shows that the convergent expansions
(3.5) and (3. 6) coincide, so that
LB(a

i) F(a).

202
The Borel sum of order 2 of the series (2.9) is de-
fined by the integral fo eVs'(LB(as))/(2a2s2)ds;

then, through (3. 7) and (3. 2), since this last integral
is uniformly and absolutely convergent in any com-
pact having no intersection with the real axis, we can
conclude:

(3.7

Theorem 3.1: The divergent perturbation expan-
sion (2.9) is Borel summable of order 2 to the exact
solution L I(a) in the whole a plane cut along the real
axis.

Let us now prove the convergence to the solution of
the approximation method proposed in Ref.7, which
consists in taking the Padé approximants on the Borel
transform analytic at the origin.

In this procedure, thus, approximants to (L H{a))/(2a2)
are defined by
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(3.8)

where F¥.¥+j](a) are the [N, N + j] Padé approxi-
mants to the Borel transform F(a) defined by (3. 3).

. L .
Jfrala) = [ e SR Kas)ds,

We have now the following:
Theorem 3.2:

im f{¥¥(a) = L (a), j=1 (3.9)
N-00

uniformly in any compact of the « plane.

Proof 12: Let us remark that we have to prove
only the convergence of fJ¥-¥+*1(a) to (L, (a))/(2a2);
as it is well known, this implies the convergence of
any sequence f¥.8jl i > — 1 and then also the
validity of (3.9) for any j = 1, since the fJ¥.V+i+2]
approximants to (L ;(a))/(2a2) are the f{¥-¥*/] ones
to L ;(a). Now, since F(a) is meromorphic in the
whole a plane having simple poles with positive re-
sidues along the real axis, it is known!3 that

lim FIN.N-1( @) = F(a)

N-oo

(3.10)

uniformly in any compact containing none of the poles
of F(a). Now for « in the cut plane, the boundedness
of |F(a)| as |a] — « as well as that of |FIV.¥-1(q)|
for any N are clearly sufficient to justify in (3. 8) the
interchange of the limit N— © with the integral, in
spite of the nonuniformity of the convergence of
FINN-1)(@) to F(a) at infinity. We can then conclude

lim Ff¥.4¥-1(a) = L (a)/20:2,

N-—roo
uniformly in any compact of the a plane cut along the
real axis,

Let us address ourselves now to the question of the
convergence of the generalized Padé approximants,
introduced in Ref. 6 and proposed in Ref. 14, in the
framework of a superposition of the Stieltjes and
Borel summation methods, as an approximation
method for functions whose divergent Taylor expan-
sion is of Stieltjes type, but not Stieltjes summable.
We will now briefly recall the method of Ref. 14, to

which the reader is referred for a detailed treatment.

A formal power series

00O

2 C,zn

n=0

is said to be (S, B;m) summable if and only if its
Borel transform of order m, defined as

(3.11)

©  C
EO (m,’l')! zn (3.12)

is Stieltjes summable. Since, as it is well known,
there exists in this case one and only one positive
measure g(x) in [0, ), such that the Stieltjes sum of
(3. 12) can be written in the form

© d
Ela)=Jy 1 :IL(?x’

(8.13)

the (S,B;m) sum of (3. 11) has the expression

2011

©  dg(x)

f(z) = fo°° e"eda fO 1+ amzx

= f0°° e ¢F, (zam)da.
(8.14)
The generalized Padé approximants to the series
(3.11) are now defined as follows:
FINN(2) = f0°° e eEIN.N ) (zam)da, (3.15)
where, as usual, the [N, N + j] Padé approximants to
F,(z) are indicated by E[V.N+(z).

We now have

Theorem 3.3: The divergent perturbation expan-
sion 230 o A, (— @)™ is (S, B; 1) summable to (L, (a))
/(2a)2; or, equivalently, any [N, N + j],j = 1, sequence
of generalized Padé approximants converges to
L (@), uniformly in any compact of the o plane cut
along the real axis.

Proof: We have to show the Stieltjes summability
of the Borel transform of order 1 of the expansion of
(L ,(@))/(2a2),i.e., of the series

2 Am S (2m + 1)! X G2
—_{— m = __________am
m§0 m!( ) mz=;0 m! ( ) nE=1 m2y 2

LA ) G
) ) Can)

It is easily seen that the above series is the divergent
Taylor expansion of the function

LE@) v x(t)dE

(3.16)

= T (3.17)
202 o 1 + ot
where - ,
r /4?y1/2 e (n2. 2 ;
X(t):—zi,zf((y/x) m)e (nw/4y)9(_t)
y n=1 nm
2 !\ 1/2 - .
+ 2 SN2 Pt gy s
x' 7 nw
—w << ow, (3.18)

The analyticity properties of (3.17) are, of course,
the same as those of L ().

Now, since one has trivially

)

m=0 m!

the Hamburger moment problem for the coefficients
A, /m! is determined by the Carleman criterion.
The same Hamburger theorem employed in the proof
of (2. 3) ensures then the convergence to (L5 (a))/
(2a2) of the Stieltjes type continued fraction associ-
ated with the series (3. 16), i.e., the Borel transform
is Stieltjes summable. As we know, this means the
convergence of the [N, N] and [N, N — 1] Padé se-
quence, j > 0,is also convergent to (Lo ))/(202).
Then, proceeding in exactly the same way as in
Theorem 3.2, we can conclude that any sequence

[N, N + j] of generalized Padé approximants f,[¥. N+l
J = 1, converges to L (a), uniformly in any compact
of the cut a plane.
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Radiative transfer in adjacent half-spaces with specular reflection
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Radiative transfer in absorbing, emitting, isotropically scattering, gray adjacent half-spaces with specular reflection at the
interface is solved rigorously by the application of normal-mode expansion technique. An alternative method based on the
superposition of half-space problems is also presented for the solution of the problem. Once the expansion coefficients for
the solutions are evaluated from the given relations, the physical quantities such as the angular distribution of radiation
intensity and the net radiative heat flux anywhere in the medium can readily be determined.

l. INTRODUCTION

The problem of radiative transfer in adjacent media
which absorb, emit, and scatter radiation is of in-
terest in many applications. Davisonl and Chandra-
sekhar? were among the earliest investigators who
studied the angular distribution of radiation at the
interface of two adjoining media. In the field of neu-
tron transport theory, related problems have been
investigated3—¢ for the cases involving a transparent
interface. In the present study, radiative transfer in
absorbing, emitting, isotropically scattering,gray,
adjacent half spaces with specular reflection at the
interface is solved rigorously using Case’'s? normal-
mode expansion technique. An alternative method of
treatment based on the superposition of half-space
problems is developed for the solution of this prob-
lem. The present analysis have the advantage that,
once the expansion coefficients are determined for

a given set of parameters,the physical quantities
such as the angular distribution of the radiation in-
tensity and the net radiative heat flux anywhere in the
medium are immediately determined.

In Sec.II we present a rigorous solution of the radi-
ation problem in two adjacent half spaces for the
nonconservative (i.e.,w; <1,w, < 1) case,while in
Sec.III we solve the problem for a combination of a
conservative and a nonconservative (i.e.,w; <1,
w, = 0) media. Finally,in Sec,IV we present the
method of superposition.

The two-region radiative transfer considered here
may find applications in boundary layer heat trans-
fer involving two different streams separated by a
semitransparent barrier, in solidification and melt-
ing problems, and in two-region heat conduction when
radiation effects are important in such problems.

Il. NONCONSERVATIVE CASE (w, < 1, w, < 1)

The equations of radiative transfer for absorbing,
emitting, isotropically scattering adjacent half
spaces are given as

ol (T’l"") w 1 ’ ’
M_}a_—+11(7:“)=s1(7)+?lf_1 Il(TalJ')d“‘ ’
T
7<0, (la)

Al (7, 1t) w, 1 o
p =R Dy(m ) = Sgln) + 22 [ (mw g,
7>0. (1b)

In writing the boundary conditions for this problem,
consideration will be given to reflection of radiation
at the interface. According to predictions by the
classical electromagnetic theory, reflection and re-
fraction at the interface vary with direction. How-
ever,because of the complexity of analysis, the re-

2013

flectivity is generally taken independent of direction
even for one region problems. For the more involved
two-region problem considered here, it is reasonable
to assume constant reflectivity and neglect the con-
densation effects. With this consideration we write
the boundary conditions for the above problem as

1,(0,p) = pyI4(0,—p) + Tyl (0,p), <0, (2a)
12(05 IJ') =p212(0,_l-1-) + F111(07 Il), [ > 0, (Zb)

and at infinity as
lim I(7,u) - P{t,u), i=1or2, (2¢)

17100

where I(7, 1) is the intensity of radiation, 7 is the
optical variable, w; is the single scattering albedo,
and u is the cosine of the angle between the positive
7 direction and the directed intensity. S{7) =(1 —w))
X n20T%(7)/n is the inhomogeneous source term,
P,(1, ) is the corresponding particular solution, o is
the Stefan—Boltzmann constant, T is the temperature,
and p; and T';, ¢ = 1,2, are the reflectivity and trans-
missivity of the interface. We note that I'; =

(1 —p,)/n2 and T, = (1 — p,)/n2, where zis the re-
lative refractive index (i.e.,n,/#n;). When n = 1,both
media have identical refractive indices, then reflec-
tivity vanishes and the interface becomes transpar-
ent. When the two media have identical refractive
indices but separated by a thin, semitransparent, re-
flecting layer,the above boundary conditions with re-
flection are still valid,but with » = 1.

We proceed to write the desired solutions of the
equations of radiative transfer as a linear sum of the
normal modes and a particular solution in the form7

I(1, 1) = A(—=vp)d 1 (— vy, e %o

1
+ Jy Angi(—n,me ™ + P(r,p),
7<0, u E(—l,l), (33)

L(1, 1) = A(ng)d 5(ng, m)e "o

1 =T
+ Jy Ao y(n,u)e Man + Pyl 1),
>0, pe(~1,1), (3b)

In writing Egs. (3) we have omitted those elementary
solutions that diverge at infinity, thus the resulting
solutions satisfy the requirement of Egs. (2c). Here,
A(—vy), A(—n),A(ny), and A(n) are the expansion co-
efficients which are to be determined by constrain-
ing these solutions to meet the boundary conditions
given by Eqs. (2a) and (2b). The normal modes are
defined as7:8
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w,g 1 —Vy i=1
oé )= —, & ={ , (4a)
2 g'—“ nO’ i=2

¢;(n, 1) =% w;n[P/(n—w)] + x;(mdln —p),
ne(-1,1) i=1or2, (4b)

M =1—w;ntanhly, i=1or2, (4c)
and the discrete eigenvalues (vy,n,) are the zeros of
the dispersion function

=1—-w;z tanh‘l'(l-),
z

i=1lor 2., (4d)

1 g
Ai(z)=1+w,.:;-f_1-“—~i"_-;

Here P is a mnemonic symbol used to denote that the
ensuing integral is evaluated in the Cauchy principal-
value sense,and &(x) is the Dirac delta function.

Before pursuing the analysis,we note that once the
intensity of radiation is determined, the net radiative
heat flux ¢(7) is obtained from

1
q;(7) =27 f_l Ii(t,p)pdp, i=1lor?2. (5)

Analysis: The introduction of the solutions given
by Egs.{3) into Eqs.(2a) and (2b}, respectively, yields

M1(p) + pl[A(-—- V0)¢ 1(“ Vgs 13}
+ [ A6 ', wdn']
+ T, (A9 o(=n0,k) + fy Aoy, )i
=A(=vo)d,(ve k) + f; Al=n")p (n"'p)dn’,
u >0, (62)
1
Mok + pa(Al1lga(—10,) + [y AW)os—1',w)dn)
+ T1(Al=v0)6 (=vs1)
+ [y Am)g i, wan)
= AGb 5o, 1) + [ AW, W),
B >0, (6b)
where

M1(P) = P1P1(09N) —P1(0,~uv) + F2P2(0,—-p,),
u >0, (7a)

M) = paPy(0,—p) — Py(0, 1) + Ty P10, 1),
p>0, ()

We note by the half-range completeness theorem?
that an arbitrary Hélder function defined in the inter=-
val p € (0,1) can be expanded in terms of ¢(v,, 1),
¢ 1(n, 1) or ¢(ngy, w)¢,(n, 1), and the right-hand side
of Egs.(6)are such expansions. Equations {6a) and (6b)
"are two coupled singular integral equations; they may,
however, be transformed to coupled regular Fredholm
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integral equations by making use of the orthogonality
properties of the normal modes and of the results of
various normalization integrals summarized in the
Appendix.

We operate Eqg.(6a) first by the operator fol wH ()

X ¢ 1(vg,H)dp and then by [3 wH,(p)é 1(n, u)dp and,
respectively, obtain

1 ¢ 1(“ Vos Vo)
—N —p, 21y 0! 0/
(Vo 1lro) =Py H(vy)

¢2(“ng: Vo) _
mHl(nO) A(ng) = G(vg)

1 ¢1(_n',1’0) ,
TV 1270l aq
+ (pl 7 (—n')
%(—7?',1’0)
31("7’)

)A(-— Vo)

_...1"2

+T, A(n')) dn’, (8a)

¢1(" Vgs )]

1
~N,mMA~n) =G
; 1MA(—n) im +py #0g)

Al—vg)

$o(—"¢,M)
H]_(?Io)
¢1(—7I’,??) ¥
T oA —
+j:(p1 o AC
¢z('—77',71)
Hq(n")

+T, A(ng)

+ T, A(n’)) dn’. (8b)
1
Now we operate Eq.(6b) first by the operator fo BH ()
1
X ¢2(770, i )dp and thenby fO qu(,u)qu(m mem
and, respectively,obtain
1 (i’z(“"'?o; T?o)
— Ny(ng) —p ——-———-——)A(n )
<'7o 2o 2 Hy1g) 0
_ rl ¢1(— Voo no)
Hy(vy)

- Gz(no) + fol (Pl

¢ o(—n"5mp)
Hz(n')

A(—vy)

¢’1(“’T3': 7?) A(__nr)
Hg(n,)

Py A(n')) d', (92)
¢ 1(— Vg, n)

Hyv,) Al—vg)

1
n“' Nz(n)A(n) = Gz(n) + Ty

do(—19,1)
+p, 2 O 4
Pa Hz(no) ("70)

1 ¢1(~n",m)

+ fo (r‘1 Mﬂg(n’) A

952(_73’77})
Hz("?’)

Here we have defined

Go(6) =1 f WH, W6 (6, 1M, (1),

(—n")

2 A ')) dn'. (9b)

i=1or 2.
(10a)
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The normalization integrals are given by

2 dA Vg, t=1
N =2 g SR ={ ° ,
2 dz - nO’ i=2
(10b)
N;(T)) = nﬂi(ﬂ)/\'}('ﬂ)l\}(n), i =1or 2, ne (0’ 1),
(10c)
where
A (A3 (n) = A3(m) +[3(wmm]2= 1/g,(w;,m), (10d)

and the function g;(w;,n) is tabulated.® Further,the
H, (z) function for isotropic scattering is obtained
from the solution of the nonlinear integral equation!®

1

w;z 1 d,
1+—l-f Hi(u)——'i——, i=1or 2, (10e)
2 "0 z2+ u

Hi(z) -
and it can be shown that
14 i=1
1 0’
=0 £ ={ s (10£)
Hz(—g) ’ Mo i =2
1
Jo Hilwo,(&,m)du =1,
:l:Vo, i=1
ge(-1,1)oré ={ . (10g)
*Mgs i=2

Equations (8) and (9) provide four relations for the
determination of the four unknown expansion coeffi-
cients. These equations can be written more con-
cisely in matrix notation as

(No —Kolho =Gy + [, Kom)A()dn',  (11a)

N(m)A®) = Gn) + KAy + fo K(n,n)A(r')dn’, (11b)

where we have defined

A(’_ Vo) A("'n)
Ag E[ ,  A) E{ } (12a)
A(n,) A(m)
Gl(Vo) G]_(ﬂ)q
Gy = [ ], G(n) = [ ) (12p)
Gz(no) Gz(ﬂ)J
Nalvg) 0 Twm o
No= Yo , N =L[? ,
° Nalng) v 0 Ny(n)
0 Mo (12¢)
¢1("V09 Vo) r ¢2(—7)0, V())
tOHv) 27 Hyn)
K, = , (12d)
r ¢ 1(— VosMg) ¢z(""’lo:no)
1 2
Hz(Vo) Hz(no)
p ¢ 1(—n, ¥g) ¢ o(—n, Vo)
Ya®m) Hy(n)
Ko(n) = » (12e)
¢ 1{~1,7¢) ¢2(“77;770)
b Hym) 2 Hym)

2015
¢1(_'V0977) ¢g(_770,77)
vy T2 THmy)

K(n) = ,  (12f)
¢1("V0’7)) P ¢z(—no;77)
! H,(vy) 2 Hz(no)
¢1(=n",m) ¢ o(—n",m)
! H]_(n') 2 H1(nl)
K(n,n") = (12g)
¢1(=n",m) do(—n",m)
oH,m) 2 Hym)

In the above equations,the components of the vectors
G, and G(n) involve the particular solutions P,(7, )
and P,(7, 1) which depend on the type of the inhomo-
geneous source terms S;(7), ¢ =1 or 2, of the equa-
tions of radiative transfer equations (1a) and (1b).
Once the type of the source term is specified, a par-
ticular solution of the equation of radiative transfer
can be constructed.l1l

Equations (11) are regular, Fredholm type integral
equations which can be solved numerically for the
four unknown expansion coefficients. Once these
expansion coefficients are determined, the intensity
of radiation is evaluated from Eq. (3) and the net
radiative heat flux according to Eq. (5),i.e.,

q1(7) =21(1 —w,) (—A(— Volvee v
— [} Al=mime™an

+ (L= wa)L [ Pyl nd), (132)

- 1 .
q2(1) = 2n(1 —wz) (A(ﬂo)noe /0, + fo Almne r/ndn

+(1—w2)'1]_iP2(1,u)udu>. (13b)

Here we have used the relation

f_ll po(&,p)dp =81 —w;),
"‘Voi=1
§€(—l,l)or§=i (14

Ngt=2

Analytical Approximations: Up to this point our
analysis has been mathematically rigorous, and the
degree of precision of the final solution for the radi-
ation intensity and the net radiative heat flux depends,
of course,on how accurately the four expansion co-
efficients are determined. However, analytical ap-
proximations can also be obtained from Egs. (11).

The first-order solution is obtained by neglecting the
continuum coefficients entirely [i.e.,A(n) = 0];then
the discrete coefficients are obtained from Eqgs.(11a)
as

AP = [N, —K,]'G,,. (15)
The second-order solution is found by neglecting the
contribution from the kernel K(n,7n’) in Eq.(11b),and

by using in that equation the first-order solution for
A, Then, A®(n) is obtained from Eq.(11b) as
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A(n) = N-Y()[G(n) + KmAY],

and substitution of A®X(n) into Eq. (11a) yields A as

(16a)

1
A(OZ) =[Ny —K,]! (GO + fo Ko(n')A(z)(n’)dn’). (16b)
Special Case w; = w, < 1: For this special case,
Eqgs.(11) are simplified since v, = ng, H(§) = H,(§)
= H(£),0,(&, 1) = ¢o(£, 1) = @&, 1),and N, (&) =N (&)
= N(§),where £ =71, 0or n €(—1,1):

1 (P(“‘Tlo,ng)
-~ NI I - —————pJ] A
(n0 (ot = ) (1)
1 ¢(—'n’:no)
= ) ————dv/, 17
Go tp fo A(n) 2o 7', (17a)
L vmam = ot + 2570 oam)
7 H(ng)
¢(—71',77)
Alp") ———dn’. i
+o fy A T dn. ()
where
[91 'y
p= (17c)
ry »pe

and I is the unit matrix.

. THE CASE w; < 1, w, =1

We now consider a situation in which medium 1 is non-
conservative (w; < 1) and medium 2 is conservative
(wy = 1). The equations of radiative transfer are
given as

I(r, 1) w, A o,
" —lé-T’—— +I(1,u) = S,(7) + —21 S, nrenay,
7<0, (18a)
oly(T, 1) 1 o
R Il =4 [ Lm0
>0, (18b)

subject to the boundary conditions (2a),(2b}, and (2¢)
with P,(7, 4) being set equal to the normal mode

which is allowed by the boundary condition at infinity.

The solutions satisfying the boundary conditions at
infinity are given as

v/ Vg

I, p) = A(— vold 1{=vps ple
+ [ A (=, me My + Py(r, ),

7<0,p€ (—1,1), (19a)

I(t,u) =A + fo1 A(m)o*(n,p)e "/ndn,

>0, pe{-1,1), (19b)

where the normal modes ¢ {(—vg, it} and ¢ (—n, 1)
are defined by Egs. (4a) and (4b), respectively, and
¢*(n, u) is defined as

¢*(m, 1) = in [P/(n — )] + 2*(m)s(n — p), (20a)
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where

A*(n) =1 — 75 tanh 17, {20b)

When the solutions given by Egs. (19) are introduced
into the boundary conditions (2a) and (2b), two coupled
singular integral equations are obtained:

1000 + 91 (Al v (= vgs )
+ fo1 A(—n’)qﬁl(—'n',u)dnﬁ
1
+ I‘z(A + fo A(n')cb*(-—n',u)dn’)
= Al=v)d1(vo, ) + [1 Al=n)(a', p)dn’, (21a)
S,lu) + rl(zu— V)b 1= V) i)
+ fol A(~n')¢1(—~n’,u)dn’)

+ Py fol A )o*(—n',pn)dn’

=(1—pyA + fol Aln")e*(m',p)dn’, (21b)
where

S1{p) = p1P1(0,p) — P4(0, 1), (22a)

So(w) = IT'1P4(0, p). (22b)

These two coupled singular integral equations may be
transformed to regular Fredholm integral equations

by first operating Eq.(21a) by fé pH ()¢ 1(vg, Wdp
and f pH ()¢ 4(n, p)dp ,and then operating Eq. (21b)

1
by [o BH*(u)dp and f; pH*(u)¢*(n,p)du. The re-
sulting equations for the expansion coefficients can
be written in the matrix form as

1
(N} —JQAE =Fo + [ Jom)AM)dy,

N*mA(n) = F(n) + Jn)Ag + fol I(n,n")AM")dn’,

(23a)

{23p)
where we have defined
—A 1(_‘ Vo)] [A('"n):}
A* = » A= ) (24a)
LA A(n)
[F (vg) Fy(n)
Fo= , Fm)= , (24v)
 F, Fyn)
FiO) = L Jy mH0OE, S s, (240)
o= [0 uB et ms,udn,  (240)
Fop= fol pHX(p)S (1 )dp , (24e)

1
=N

Nés[”o 10 02 :l, NMp =1t [Nl(n) ° \,
0 - Tio N*1n)

3 {25a)
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Ny(vg) = w178 Hy(vg) ) (25b)
2 dz |,
Ny(m) = nH (M Ay(n)Az(m), (25¢c)
N(n) = nH*(n) A*(n) A-(n), (25d)
A*m)A(n) = A*2 AR 25
(M A(n) = A*2(n) +(2) o (25¢)
¢1(_ VO’ l"0) _ 1/
1 Hl(vo) FZ(I wl) ’
JO = wqyVgy 2 P (26a)
L B (vy) 275
WP ¢*—n', Vo) ¢*—n', Vg)
Y () 25
Jo(n) = . (26b)
7 nl
“Tipm) P )
. ¢1l=vo,m) Tl — w,)1/2
H(vo)
Jn) = ,  (26¢)
¢ 1("’ Voy 77)
LHM )
Piwy ry
H") Hin")
Jn,n") = ¢*(=n'sn) , (26d)
Tw, Py
H*n') H*(n'
and H*(z) function is the solution of
R Z 1 dy
Pty b B (26¢)

The solution of Eqs. (23) yields the unknown expansion
coefficients. Analytical approximations can be obtain-
ed as described previously.

1V. SOLUTION BY SUPERPOSITION OF
HALF-SPACE PROBLEMS

In this section we present a method of solution of the
adjacent half-spaces problem considered in Sec.II
by the superposition of the solutions of single half-

- space problems. Although this method eventually
yields the same set of relations for the expansion co-
efficients as those given by Egs.(11),it provides bet-
ter insight to the physical significance of the results
given by Egs. (11) as well as to the physical signifi-
cance of various orders of approximations obtained
from them.

The radiation problem defined by Egs.(1) and (2) are
written more compactly in the form

L;Li(T,u) =8y, (27a)
where we have defined the operator L, as
ol w
- 3 .
Lit=u=t + =20 [ Ly (27)

with

2017
) s 1, 1<0
7 =1 ) (270)
2, 1>0
subjéct to the boundary conditions
1300, 1) = py(0,—p) + Tpl5(0,p), p<0,(28a)
12(0,[1) = paly(0,—p) + rlll(o, B), u >0.(28b)

We now represent the intensity I, {7, 1) by the super-
position of the intensities I " (r,4) of single half-
space problems in the form
N
L(t,p) = Z; Ly(t,m) + ¥(7, p), (29)
iz
where I; {7, 11) are the solutions of the following sim-
ple problems:

Lily(r,0) =8, and Lyl (7,p) =S,

) 51, 7<90
leji(v',p)zo, t=2,""*,N; ]-_—1 ’
2, 7>0
(30)
subject to the boundary conditions
L;(0,p) = (1 — 6u>(p,1j,,--1(o,—u)
2 51, p <0
+ 2 (1- ﬁjk)rklk,i—l(o’ P‘)) y d =1 s
k=1 2, u>0
and (31a)
1H|m Ly ) = 64, BT, 1),
e ;1, 7<0
i=12,-,N, j (31b)

T, >0
Here §,; is the Kronecker delta,and P;(T,u) is a
particujlar solution of Eq.(30).

The function ¥,(7, 1) satisfies the following equation:
1, <0

Lj‘I’,-(T,H)=0, .7 ={ ’
2, 17>0

(32)

subject to the boundary conditions
‘If]. O,p) = £y [IjN(O,"'F) + q’j (01“‘1")]

2
+ 2 (W= 0,)T, [0) + 4,0,)),

1 u<o0
={ ’ , (33a)
2, u>0
and
i, T<0
lim ¥,(r,p) -0, j={ . (33b)
1 Ti=o0 2, >0

Scrutiny of the radiation problem defined by Eqgs. (30)
and (31) reveals that the intensity function / j‘-(1', M)
approaches zero as N becomes infinite. Then,in Eq.
{33a) the forcing functions 1,,(0,~—p) and I, \ (0, )
vanish, and the solution ¥; (7, 1) of Eq. (32) subject to
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boundary conditions Egs. (33) become trivial for N
— o, Therefore, for N » «, Eq. (29) becomes

1, <0

Ij(T: p) = E Iji(T’ V'), J ={ . (34)
i=1 2, 720

We now proceed to construct the solutions of the sin-
gle half -space problems defined by Eqs.(30) and (31).
The solutions for I,;(7, ) which satisfy the boundary
conditions at infinily as given by Eq. (31b) can be
written as a linear sum of the normal modes and a
particular solution in the form

'r/vo

Ilg(T’P') =A‘(-—V0)¢1(——V0,p,)e
+ [y A =ngy(—n,p)em/dn + 01, Py(r, ), (352)

12‘(T, p) = Ai(no)¢2("0’ P)e-flno

+ f;As(n)%(n,u)e'”"d” + 013 Po(7, 1)
(35b)

Substitution of Eqs. (35) into Eq. (34) yields the radi-
ation intensity for the two adjacent half-spaces prob-
lem as

Li{t,) =<:Zj;1Ai(— Vo)) (= vo,y)eT/"O

+ (i Ai<—n>)
X ¢1(—n,weT/ndn + Py(7,p),

1<0, pe (-1, 1), (36a)

L7, 1) = (551 44(19) #3ln6, e "0 + Jo @Ai(n))

X ¢q(n, u)e"Tndn + Py(T,p),

T>0, p e(—1,1). (36b)
The normal modes appearing in these equations have
been defined previously,and the expansions coeffici-
ents A;(—v,),A;(—v),A;(ny),and A,(n) are the half-
space problem expansion coefficients associated with
the solution given by Egs. (35). These expansion co-
efficients are evaluated by constraining the solutions
given by Eqgs. (35) to meet the boundary conditions
(31a) and then solving the resulting singular integral
equation by utilizing the orthogonality property of the
normal modes and various normalization integrals in
a similar manner described previously. In this case,
explicit relations could be obtained for these expan-
sion coefficients; omitting the details we present be-
low the resulting expressions for A (—v,),A4;(—n),
A;(Tlo)‘9 and A,-(n)i

A (—§) = L J3 wH () (£, 0)F (p)dp,

N,4(§)
£ = Vg1, (37a)
A ) = 171(?) S W H (1) 58, 1IF H(1)d,
z £ =1gm, (37b)
where
Fy(p) = —Py(0,~p), (38a)
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Fz(“) = "'Pz(oy 1), (38b)

1
N(olA; =KohA 1 + [ KomA,y(n)dn’ + 6,58,

i =2,3,..., (392)
N(mA {(n) "
=K(mA;., + fo K(n,n)A;.:(n")dn’ + 6,;,8(n),
i=23,..., (39D)
where
Ai(“"yo)_ Ai(—n)
A; = , A;m = , (40a)
[ 4;(0) Ain)
r.51'2 0 ]
6,5 = , (40b)
s.vg) ] S,(n)
Sy = , | S} = , (40¢)
S2(no Sa(n)
where

5:(6) = i_fol BH ()66, )R ()R, i = 1,2 (40d)

and
Ri(p) =p1P1(0, ) + TuP,(0,—p),

Ry(u) =P2P2(0:"‘N) + F1P1(0,IJ)-

(40e)
(40f)

Other quantities are the same as defined in Egs. (12).

A comparison of the solutions given by Eqgs. (3) and
(36) implies that if these two solutions are identical,
we should have

o0
A(&): Z]_ Ai(g), =—-Vo,+ Nos 1 (41)
i=
Indeed, the substitution of the coefficients A;(£) given
by Egs. (37) and (39) into Eq.(41) has shown that the
results are identical. In fact,the results as given by
Egs. (37) and (39) characterize the solution of the
Fredholm integral equations (11) for the expansion
coefficients by the method of successive iterations
and provide an explicit relation for various orders of
approximations.
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APPENDIX: HALF-RANGE COMPLETENESS AND
ORTHOGONALITY THEOREMS

Here we state the half-range completeness theorem
presented initially by Case?.8 and the half-range or-
thogonality theorem. In addition,a summary of the
necessary normalization integrals is given.

Theovem I: The eigenfunction ¢(n,, 1) and ¢(n, 1),
1 € (0,1) are complete on the half range in the sense
that an arbitrary Hélder function y(p) defined for
g € (0,1) can be expanded in the form
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+1
V() = Alng)dlng, 1) + [~ Ame(n, W,
u€(0,1). (Al)
Theorem II: The eigenfunctions ¢(n,, s) and
é(n, 1), 1 € (0,1) are orthogonal with respect to the
weight function p H(p) on the interval 0 = p =< 1,i.e,,
1

J, HWSE, D", 1)du =0,

E=E, £, =nyor €(0,1). (A2

Normalization Integrals:
1
fQ “Hi([-")ﬁbi(ns u)¢i(n', #)dﬁl
=nH;(MA;(mMA; (s —n'), (A3)

2 dA;
fol V‘Hi(”)q%z(g,ii)d“ “—_—’L:)"g—‘H,‘(E) 1(2)
2 dz

, (A4
£

n

k4

2019
where
Vo, t=1
£={ , mnandn’ € (0,1),
Mos i =2
1 ﬁbj("'i,??)
fo RH () (0, 1), (&, p)dp =1 —}ag‘—» (A5)
where
Voo i =1
n:{ . or me(0),
Mo i =2
‘VO, = 1
g={ , or £=n"€(0,1).
MNogr J =2

Normalization integrals (A3)—(A5) have been derived
by making use of the properties of the eigenfunctions
and the properties of H function given by Eqgs. (10).
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